Cumulative accuracy profile in banks' credit risk assessment: accounting based models and market based models
Subject Areas :
Financial Knowledge of Securities Analysis
samaneh shafiee
1
,
mohammadhamed khanmohammadi
2
,
alireza zarei soodani
3
,
Mahmmod Agha hoseinali shirazi
4
,
Zahra Moradi
5
1 - azad university
2 - استادیار گروه حسابداری، واحد دماوند، دانشگاه آزاد اسلامی، دماوند، ایران. (نویسنده مسئول)
3 - azad university
4 - damavand azad university
5 - Damavand azad university
Received: 2022-01-11
Accepted : 2022-01-11
Published : 2021-11-22
Keywords:
Maximum accuracy of transfer i,
accuracy ratio,
Structural model,
diagnostic analysis model,
Abstract :
This study examine the Merton structural model based on market data and the discriminant analysis model based on accounting data in banks during 1386 to 1398. Due to the different structure of banks' balance sheets, for the first time, using the transformed data maximum likelihood estimation method and other liablilty with an adjustment and calculate the market value of assets and their volatility Using the stock price, we calculated the distance to default and the probability of default with the modified Merton model. Then, with the discriminant analysis model and Wilkes lambda index, we introduced a model based on accounting data to measure credit risk in banks. Among variables, inactive credits to total credits, total credits to main deposits and reserves to inactive credits have the most impact on determining the credit risk of banks, respectively, which is determined by z coefficients. The lower z score, the greater credit risk and vice versa. Finally, using the cumulative accuracy profile and accuracy ratio, which is a new method in determining an efficient model for credit risk, Merton's structural model is compared with z-score model, and finally Merton's structural model with an accuracy ratio of 70.97 as an efficient model for measuring credit risk in banks
References:
اسماعیل زاده،ع. و جوانمردی، ح. (1396). طراحی الگوی مناسب مدیریت ریسک نقدینگی و پیشبینی ریسک آن در صنعت بانکداری ایران. فصلنامه اقتصاد مالی، 11(39)، 171-191
-امیری، حسین (1396). ارزیابی نرخ بیمه سپرده در بانکهای ایرانی. فصلنامه علمی پژوهشی مدلسازی اقتصاد سنجی، سال دوم، شماره دوم، (پیایی5)، ص151-178
بیگدلی،محمد، تقوی، مهدی، اسماعیل زاده مقری، علی، دامن کشیده، مرجان(1398). آزمون تجربی تاثیر ریسک فضای کسب و کار بر رابطه بین ریسک اعتباری و عملکرد مالی در صنعت بانکداری ایران. فصلنامه اقتصاد مالی، 13(48)،1-35
ثقفی، علی، دامغانیان، جمال، بولو، قاسم، سیاح، سجاد و دولو، مریم (1395). سنجه سازی جامع برای ارزیابی مدیریت ریسک اعتباری. فصلنامه پژوهشهای پولی-بانکی، سال نهم، شماره 30، 595-623
حاجیها، زهره، بخشی، نیره (1396). بررسی رابطه اطلاعات حسابداری و ریسک اعتباری در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران. مطالعات حسابداری و حسابرسی، شماره 24، 53-68
سلحشور، رضا (1389). آسیب شناسی اعتبارات و ریسک اعتباری. صنعت و کارآفرینی، شماره41
سوری، علی (1396). اقتصادسنجی پیشرفته. جلد2. چاپ ششم. 531
علم الهدی، س.س (1397). بانکداری اسلامی و ریسک، یک تحلیل تطبیقی. فصلنامه اقتصاد مالی، 12(44)، 69-86
فلاح شمس، میر فیض و رشنو، مهدی (1387). مدیریت ریسک اعتباری در بانکها و موسسات مالی و اعتباری (مفاهیم و مدلها). انتشارات دانشکده علوم اقتصادی
کرمی، غلامرضا و حسینی، سید مصطفی (1391). سودمندی اطلاعات حسابداری نسبت به بازار در پیش بینی ورشکستگی. مجله دانش حسابداری، 3(10)، 93-116
کلانتری، خلیل (1385). پردازش و تحلیل دادهها در تحقیقات اجتماعی-اقتصادی. نشر شریف
محقق نیا، م.، دهقان دهنوی، م. و بائی، م. (1398). تاثیر عوامل درونی و بیرونی صنعت بانکداری بر ریسک اعتباری بانکها در ایران. فصلنامه اقتصاد مالی، 13(46)،127-144
محمدی، تیمور، پورکاظمی، محمدحسین، شاکری، عباس، صفدری، علی و امین رستمکلائی، بنام (1395). ارزشگذاری بازاری و ارزیابی ریسک (نمرهZ ) برخی بانکهای خصوصی ایران: رویکرد مرتون-بلک-شولز. فصلنامه پژوهشهای اقتصادی ایران، سال بیست و یکم، شماره66، بهار95، 31-58
ناجی اصفهانی، سید علی و رستگار، محمد علی.(1397). برآورد ریسک اعتباری مشتریان با استفاده از تحلیل چند بعدی ترجیحات (مطالعه موردی:یک بانک تجاری در ایران). فصلنامه مدل سازی اقتصادی، سال دوازدهم، شماره 4 پیاپی(44)، صفحه 143-161
Agarwal, V. and Taffler, R. (2008). Comparing the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking and Finance, Volume 32, Number 8, 1541-1551
Altman, E. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23, 589-609
Beaver, W. (1968). Market prices, financial ratios, and the prediction of failure. Journal of Accounting Research, 178-192
Boateng, Kwadwo. (2019). Credit risk management and performance of banks in chana, The camels rating model approach. International Journal of business and management Invention, vol(8), 41-48
Campbell, J.Y., Hilscher, J. and Szilagyi, J. (2008). In search of distress risk. Journal of Finance, 63, 2899-2939
Crosbie, P. and Bohn J. (2003). Modeling default risk. moody’s KMV technical document.
Doumpos, M., & Kosmidou, K., & Baourakis, G., & Zopounidis, C. (2002). Credit risk assessment using a multicriteria hierarchical discrimination approach:A comparative analysis. European journal of operational research, 138,392-412
Duan, J.-C. (1994). Maximum Likelihood Estimation Using Price Data of the Derivative Contract. Mathematical Finance, 4,155-167
Duan, J.-C. (2000). Correction: maximum likelihood estimation using price data of the derivative contract. Mathematical Finance, 10, 461-462
Duan, J.-C. (2010). Clustered Defaults. National university of Singapore working paper.
Duan, J.-C., Sun, J. and Wang, T. (2012). Multiperiod corporate default prediction-a forward intensity approach. Journal of Econometrics, 170,191-209
Duan, J-C. & Wang, T. (2012). Measuring distance-to-default for financial and non-financial firms. Global Credit Review, 2,95-108
Ericsson, J. and Reneby, J. (2005). Estimating structural bond pricing models. Journal of Business,78,707-735
Flannery, M.J. (2000). Modernizing financial regulation:The relation between interbank transactions and supervisory reform. Journal of financial services Research, 17(1), 101-116
Gestel, Tony Van and Baesens, Bart (2009). Credit Risk Management Basic Concepts: Financial Risk Components, Rating Analysis, Models, Economic and Regulatory Capital.
Greuning, H.V. and Bratanovic, S. B. (2009). Analysing banking risk: a framework for assessing corporate governance and risk management. Third edition .World bank publications
Hillegeist, S.A., Keating, E., Cram, D.P. and Lunstedt, K.G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9, 5-34
Joseph,C. (2013). Advanced credit risk Analysis and Mangement, Retrieved from https://ebookproquest.com
Kliestik, T. and Cug, J. (2015). Comparison of selected models of credit risk. Procedia Economics and Finance, 23, 356-361
Kollar, B. and Gondzarova, B. (2015). Comparison of current credit risk models. Procedia Economics and Finance, 23, 341-347
Liu, M., Chang, D., Lee, H. (2010). The Default Prediction Power of the Market-based Approach Relative to Accounting Variables – Evidence for Taiwan and China, International Conference on Finance.
Martin,S. & Peat,M. (2009). A comparison of the information content of accounting and market measures in distress prediction.
Mensah, Y.M., (1984). An examination of the stationarity of multivariate bankruptcy prediction models: A methodological study. Journal of Accounting Research 22 (1), 380–395.
Muvingi H., Nkomo, D., Mazuruse, P. and Mapungwana, P. (2015). Default prediction models a comparison between market based models and accounting based: case of the zimbabwe stock exchange 2010-2013. Journal of Finance and Investment Analysis, Vol. 4, No.1, 39-65
Niklis, Dimitrios, Doumpos, Michalis and Zopoundis, Constantin. (2018). Credit risk modeling: a literature overview based on market models. Internatinal journal of sustainable economics management, 7(3):50-64
NUS-RMI credit research initiative technical report (2017), credit research initiative. risk management institute, national university of singapore
Oderda, G., Dacorogna, M., Jung, T., (2003). Credit risk models: Do they deliver their promises? A quantitative assessment. Review of Banking, Finance and Monetary Economics 32, 177–195
Rashid, A. & Abbas, Q. (2011). Predicting Bankruptcy in Pakistan, Theoretical Applied Economics,103-128.
Reisz, A., Perlich, C., (2004). A market-based framework for bankruptcy prediction.Working paper, Baruch College, City University of New York
Rose, P. S. (1999). Commercial bank management, 4th edition: MC Graw-Hill, p.170
Sinha, P., Sharma, S. and Sondhi, K. (2013). Market valuation and risk assessment of indian banks using Black-Scholes-Merton model. MPRA, 1-26
Sloan, R. (1996). Do Stock Prices Fully Reflect Information in Accruals and Cash Flows About Future Earnings? Accounting Review ,71:3, 289–315.
Taiwo, JN; Ucheaga, EG; Achuganmonu, BU; Adetiloye, K. Okoye, L. and Agwu,M.E. (2017). Credit risk management: implications on bank performance and lending growth. Saudi Journal of business and management studies, Vol 2,584-590
Trujillo-ponce, Antonio, Samaniego medina, Reyes & Laura cardone riportella,Clara. (2013). Examining what best explains corporate credit risk: accounting based versus market based models. Journal of business economics and management,15(2),1-24
Wong, H.Y. and Choi, T.W. (2009). Estimating default barriers from market information. Quantitativa Finance, 9,187-196
Zhou, Z., & Tang, X., & Shi, Y. (2005). A multi-factors evaluation method on credit evaluation of commerce banks. Data Mining and Knowledge Management, 229-232.
Zmijewski ,M.E.(1984). Methodological Issues Related to the Estimation of Financial Distress Prediction Models, Journal of Accounting Research, 22, 59-82.
_||_