An Algorithm for Aggregating the Opinions of Experts in the Group Analysis Hierarchical Process using a Voting Model
Subject Areas : تحقیق در عملیات
Zaher Sepehrian
1
,
Sahar Khoshfetrat
2
,
Said Ebadi Sharafabad
3
1 -
2 - گروه ریاضی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز ، ایران
3 - گروه ریاضی، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران
Keywords: مدل رأیگیری, تحلیل پوششی دادهها, فرآیند تحلیل سلسلهمراتبی, تصمیمگیری چند شاخصی, ارزیابی متقابل,
Abstract :
How to obtain a priority vector from a pairwise comparison matrix has been an important issue in the analysis hierarchical process. Group decision making is an important part of multi-criteria decision making in the sis analysis hierarchical process. In group decision-making in which all the experts work as a unit, analysis hierarchical process usually follows one of the traditional approaches of aggregating individual judgments and aggregating individual priorities. In this paper, an algorithm for aggregating the opinions of experts using the voting model is presented. In the voting model, using the votes of individuals regarding the position of the criteria, they rank the criteria without using a pairwise comparison matrix. The voting model is proposed in cases where the number of experts is very large. In cases where the number of experts is limited, the local weights can be determined using the SBM model based on the pairwise comparison matrix of each expert, using which the rank of each criterion is determined .The rank obtained from the SBM model can be considered as the vote of experts, which prevents the mental bias of experts in voting. Therefore, it is possible to aggregate the opinions of experts using the voting model. The following is a numerical example to illustrate the potential of this algorithm. The results show that the ratings obtained from this algorithm in the mode of benevolent cross-evaluation correspond to the ranking using the eigenvector method.
[1] Saaty, T.L. The Analytic Hierarchy Process; 2nd impression 1990, RSW Pub. Pittsburgh; Mc Graw-Hill: New York, NY, USA, 1980.
[2] Ahmad, F., Saman, M.Y.M., Mohamad, F.S., Mohamad, Z., & Awang, W.S.W.(2014). Group decision support system based on enhanced AHP for tender evaluation. International Journal of Digital Information and Wireless Communications. (IJDIWC), 4(2), 248–257.
[3] De Brucker, K., Macharis, C., & Verbeke, A. (2013). Multi-criteria analysis and the resolution of sustainable development dilemmas: A stakeholder management approach. European Journal of Operational Research, 224(1), 122–131.
[4] Kuzman, M. K., Grošelj, P., Ayrilmis, N., & Zbasnik-Senegacnik, M. (2013). Comparison of passive house construction types using analytic hierarchy process. Energy and Buildings, 64, 258–263.
[5] Ren, J., Fedele, A., Mason, M., Manzardo, A., & Scipioni, A. (2013). Fuzzy multi-actor multi- criteria decision making for sustainability assessment of biomass-based technologies for hydrogen production. International Journal of Hydrogen Energy 38(22), 9111–9120.
[6] Skorupski, J. (2014). Multi-criteria group decision making under uncertainty with application to air traffic safety Expert Systems with Applications, 41(16), 7406–7414.
[7] Wang, J. Q., Peng, L., Zhang, H. Y., & Chen, X. H. (2014). Method of multi-criteria group decision-making based on cloud aggregation operators with linguistic information. Information Sciences, 274, 177–191.
[8] Dede, G., Kamalakis, T., & Sphicopoulos, T. (2016). Theoretical estimation of the probability of weight rank reversal in pairwise comparisons. European Journal of Operational Research, 252(2), 587–600.
[9] Peniwati, K. (2007). Criteria for evaluating group decision-making methods. Mathematical and Computer Modelling, 46, 935–947.
[10] Dyer, R. F., & Forman, E. H. (1992). Group decision support with the analytic hierarchy process. Decision Support Systems, 8, 99–124.
[11] Ishizaka, A., & Labib, A. (2011b). Review of the main developments in the analytic hierarchy process. Expert Systems with Applications, 38(11), 14336–14345.
[12] Lai, V. S., Wong, B. K., & Cheung, W. (2002). Group decision making in a multiple criteria environment: A case using the AHP in software selection. European Journal of Operational Research, 137, 134–144.
[13] Taylor, A. D., & Pacelli, A. M. (2008). Mathematics and politics: Strategy, voting, power and proof (2nd ed.). New York: Springer Verlag.
[14] Srdjevic, B. (2007). Linking analytic hierarchy process and social choice methods to support group decision-making in water management. Decision Support Systems, 42, 2261–2273
[15] Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research 108, 165–169.
[16] Berttolini, M., &Maurizio, B. (2006). A combined goal programming – AHP approach to maintenance selection problem . Reliability Engineering &System Safety 91, 7 :839-848.
[17] Hosseinian, S.S., Navidi, H., Hajfathaliha, A. (2012). A New Linear Programming Method for Weights Generation and Group Decision Making in the Analytic Hierarchy Process. Group Decision and Negotiation, 21(3), 233-254.
[18] Huang, Y. S., Liao, J. T., & Lin, Z. L. (2009). A study on aggregation of group decisions. Systems Research and Behavioral Science, 26, 445–454
[19] Altuzarra, A.; Moreno-Jiménez, J.M.; Salvador, M.(2007). A Bayesian priorization procedure for AHP-group decision making. Eur. J. Oper. Res, 182, 367–382.
[20] Moreno-Jiménez, J.M.; Aguarón, J.; Escobar, M.T. (2002). Decisional Tools for Consensus Building in AHP-Group Decision Making. In Proceedings of the 12th Mini Euro Conference, Brussels, Belgium, 2–5
[21] Moreno-Jiménez, J.M.; Aguarón, J.; Escobar, M.T. (2008).The core of consistency in AHP-group decision making. Group Decis. Negotiat. 17, 249–265.
[22] Escobar, M.T.; Aguarón, J.; Moreno-Jiménez, J.M.(2015). Some extensions of the Precise Consistency Consensus Matrix. Decis. Support Syst. 74, 67–77.
[23] Sharafi, H., Hosseinzadeh Lotfi, F., Jahanshahloo, G., Rostamy-malkhalifeh, M., Soltanifar, M., & Razipour-GhalehJough, S. (2019). Ranking of petrochemical companies using preferential voting at unequal levels of voting power through data envelopment analysis. Mathematical Sciences, 13(3), 287-297.
[24] Charnes, A., Cooper, W.W. and Rhodes, E. (1978), “Measuring the efficiency of decision making units”, European Journal of Operational Research, Vol. 2 No. 6, pp. 429-444.
[25] Tone, K. (2001), “A slacks-based measure of efficiency in data envelopment analysis”, European Journal of Operational Research, Vol. 130 No. 3, pp. 498-509.
[26] Ho, W. (2008). Integrated analytic hierarchy process and its applications –A litera- ture review. European Journal of Operational Research, 186(1), 211–228.
[27] Khoshfetrat,S.;Hosseinzadeh Lotfi,F. ; Rostamy-Malkhlalifeh,M.(2014).Analytic Hierarchy Process: Obtaining weight vector with generalized weighted least square method by using Genetic Algorithm and simplex method. Journal of Applied Science and Agriculture. 9(1),211-217.
[28] Khoshfetrat, S.; Hosseinzadeh Lotfi, F,.(2014). Introducing a nonlinear programmig model and using genetic algorithm to rank the alternatives in analytic hierarchy process. Journal of Applied Research on Industrial Engineering. 1(1)12-18.
[29] Khoshfetrat,S., Hosseinzadeh Lotfi, F,. (2014). Deriving Priorities the Alternatives in an Analytic Hierarchy Process. International Journal of Research in Industrial Engineering. 3(4)13-20.
[30] Barzilai, J.; Golany, B. (1994).AHP rank reversal, normalization and aggregation rules. INFOR, 32, 57–63.
[31] Escobar, M.T.; Aguarón, J.; Moreno-Jiménez, J.M.(2004). A Note on AHP Group Consistency for the Row Geometric Mean Priorization Procedure. Eur. J. Oper. Res. 153, 318–322
[32] Cook, M. Kress, A.(1990). A data envelopment model for aggregating preference rankings, Manage. Sci. 36, 1302–1310.
33. سلطانی فر،مهدی؛شرفی، حمید؛ زرگر، سید محمد؛همایونفر، مهدی. (1400). رتبه بندی تامین کنندگان با استفاده از تکنیک تحلیل پوششی داده ها و مدل جدید کارایی متقاطع در حضور خروجی های نامطلوب. مجله پژوهش های نوین در ریاضی. 32(4): 35-57.
[34] Soltanifar. M., Hosseinzadeh Lotfi, F. (2011). The voting analytic hierarchy process method for discriminating among efficient decision making units in data envelopment analysis.Computers & Industrial Engineering 60 (4), 585-592.
[35] Soltanifar, M.,Ebrahimnejad, A. Farrokhi.,MM.(2010) Ranking of different ranking models using a voting model and its application in determining efficient candidates,International Journal of Society Systems Science 2 (4),375-389.
[36] Ramanathan, R (2006). Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process. Computers & Operations Research, 33(5), 1289–1307.
[37] Pishchulov,G. Trautrimsc,A. Chesneyc, T,.(2019). Stefan Goldd, Leila Schwabe The Voting Analytic Hierarchy Process revisited: A revised method with application to
sustainable supplier selection. International Journal of Production Economics 211,166-179.
[38] Green, R.H., Doyle, J.R., Cook, W.D., (1996). Preference voting and project ranking using DEA and cross-evaluation. Eur. J. Oper. Res. 90 (3), 461–472.
[39] Noguchi, H., Ogawa, M., Ishii, H., (2002). The appropriate total ranking method using DEA for multiple categorized purposes. J. Comput. Appl. Math. 146 (1), 155–166.
[40] Sexton, T.R., Silkman, R.H., Hogan, A.J., 1986. Data envelopment analysis: critique and extensions. In: Silkman, R.H. (Ed.), Measuring Efficiency: an Assessment of Data
Envelopment Analysis. Jossey-Bass, San Francisco, pp. 73–105.
[41] Wang, Y.-M., & Chin, K.-S. (2009). A new data envelopment analysis method for priority determination and group decision making in the analytic hierarchy process. European Journal of Operational Research, 195(1), 239–250.
