ارائه یک مدل رگرسیونی جدید با رویکرد برنامهریزی آرمانی فازی نوع-2 بازهای مقدار
Subject Areas : Statistics
Mikaeel Mokhtari
1
,
Mohammad Hassan Behzadi
2
,
توفیق الهویرانلو
3
1 - Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 - 1Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Keywords: برنامهریزیآرمانی فازی نوع- 2 بازهای, عدم قطعیت احتمالی و فازی, ضرایب رگرسیونی فازی نوع-2 بازهای, قدر مطلق انحرافات فازی, مشاهدات فازی دور افتاده,
Abstract :
Use of ambiguous and imprecise words (such as somewhat, more or less, relatively much) in human speech and judgments, randomness of some events, inability of current tools to measurement of qualitative variables (such as satisfaction, quality, feeling) have caused most of the data and measurements to be accompanied with some degree of uncertainty. In this regard, fuzzy regression models by combining statistical methods with fuzzy approaches via creating functional relationship between input and output variables provide efficient tools for analyzing various types of uncertainty (especially probablistic uncertainty and fuzzy uncertainty). In the present study, in order to fill the gap of type-1 fuzzy regression, a new regression model (two-stage) based on interval type-2 fuzzy goal programming approach is provide. To estimate the fuzzy regression coefficients, we introduce a new fuzzy least absolute errors procedure then propose a new framework for solving interval typ-2 fuzzy goal programming problems through new auxiliary variables. Furthermore, to evaluate the performance of the proposed approach, we provide several new criteria based on fuzzy similarity and distance measures. Finally, in order to illustrate the theoretical results of proposed model and explain how it can be used to derive the interval type-2 fuzzy regression model, we introduce two numerical examples.
[1] مختاری، میکائیل؛ حسینزاده لطفی، فرهاد؛ وحیدی، علیرضا (1388) ارائه یک مدل فازی برای اندازهگیری رضایت شغلی اساتید دانشگاه، تحقیق در عملیات در کاربردها، دوره 6 شماره 20 ، 47-33
[2] مختاری، میکائیل؛کرد رستمی، سهراب (1390) ارائه یک مدل فازی برای ارزیابی عملکرد آموزشی اساتید، تحقیق در عملیات در کاربردها، شماره سوم، 178-167
[3] Allahviranloo T, (2020) Uncertain information and linear systems, Springer Nature Switzerland AG.
[4] Coopi R. (2008) Management of uncertainty in statistical reasoning: the case of regression analysis, International Journal of Approximate Reasoning 47, 284–305
[5] Chen L.H, Hsueh C. (2007) A mathematical programming method for formulating a fuzzy regression model based on distance criterion, IEEE TRANSACTIONS ON SYSTEMS 37.
[6] Choi S.H, Buckly J. (2007) Fuzzy regression using least absolute deviation estimators, Soft Comput 12,257–263
[7] Tanaka H, Uejima S, Asai K. (1982) Linear regression analysis with fuzzy model, IEEE Transactions on Systems, Man, and Cybernetics 12, 903–907.
[8] Li J, Zeng W, Xie J, Yin Q. (2016) A new fuzzy regression model based on least absolute deviation, Engineering Applications of Artificial Intelligence 52, 54–64.
[9] Chen L.H, Nien S.H. (2020) A new approach to formulate fuzzy regression models, Applied Soft Computing Journal, https://doi.org/10.1016/j.asoc.2019.105915.
[10] Shakouri H, Nadimi G. (2013) Outlier detection in fuzzy linear regression with crisp input–output by linguistic variable view, Applied Soft Computing 13, 734–742.
[11] Taheri S. M. , Kelkinnama M. (2012) Fuzzy linear regression based on least absolute deviations, Iranian Journal of Fuzzy Systems 9, 121-140.
[12] Zeng W, Fengb Q, Li J. (2017) Fuzzy least absolute linear regression, Applied Soft Computing 52 , 1009–1019
[13] Hojati M, Bector C.R, Smimou K. (2005) A simple method for computation of fuzzy linear regression, European Journal of Operational Research 166, 172-184
[14] Hassanpour H, Maleki H, Yaghoobi M. (2011): A goal programming approach to fuzzy linear regression with fuzzy input-output data, Soft Computing, 15, 1569-1580.
[15] Arefi M. (2020) Quantile fuzzy regression based on fuzzy outputs and fuzzy parameters, Soft Computing, https://doi.org/10.1007/s00500-019-04424-2
[16] Kelkinnama M, Taheri S.M. (2012) Fuzzy least-absolutes regression using shape-preserving operations, Inf Sci 214, 105-120.
[17] Diamond P. (1988) Fuzzy Least Squares, Information Sciences 46, 141-157.
[18] D’Urso P, Massari R. (2013) Weighted least squares and Least Median Squares estimation for the fuzzy linear regression analysis, METRON 71, 279–306.
[19] Rabiei M.R, Arghami N.R, Taheri S. M, Sadeghpour Gildeh B. (2013) Least-squares approach to regression modeling in full, interval-valued fuzzy environment, Soft Compute, DOI 10.1007/s00500-013-1185-5
[20] Rafiei1 H, Ghoreyshi S. M. (2012) Symmetric fuzzy linear regression using multi-objective optimization, International Journal of Management Science and Engineering Management 6, 183-191.
[21] Khammar A.H, Arefi M, Akbari M.G. (2020) A robust least squares fuzzy regression model based on kernel function, Iranian Journal of Fuzzy Systems 17, 105-119
[22] Hosseinzadeh E, Hassanpour H, Arefi M, Aman M. (2016) A weighted goal programming approach to fuzzy linear regression with quasi type-2 input-output data, TWMS Journal of Applied and Engineering Mathematics 6,192-213.
[23] Wei Y, Watada J, Pedrycz W. (2016) Design of a qualitative classification model through fuzzy support vector machine with type 2 fuzzy expected regression classifier preset, IEEJ Trans 11, 348–356.
[24] Hesamian G, Akbari M.G, Shams M. (2020) Parameter estimation in fuzzy partial univariate linear regression model with non-fuzzy inputs and triangular fuzzy outputs, Iranian Journal of Fuzzy Systems
[25] Srinivasan A, Geetharamani G. (2016) Linear programming problem with interval type-2 fuzzy coefficients and an interpretation for its constraints, Journal of Applied Mathematics, ID 8496812, 11.
[26] Farhadinia B. (2014) Sensitivity analysis in interval valued trapezoidal fuzzy number linear programming problems, Applied Mathematical Modeling 38, 50–62.
[27] Gong Y, Yang S, Dai L, Hu N. (2017) A new approach for ranking of interval type 2 trapezoidal fuzzy numbers, Journal of Intelligent & Fuzzy Systems 32, 1891–1902.
[28] Mendel J.M. (2017) Uncertain rule based fuzzy systems, DOI 10.1007/978-3-319-51370-6_6.
[29] Mishmast Nehi H, Keikha A (2016) TOPSIS and Choquet integral hybrid technique for solving MAGDM problems with interval type 2 fuzzy numbers, Journal of Intelligent & Fuzzy Systems 30, 1301–1310
[30] Mishmast Nehi H, Keikha A (2016) TOPSIS and Choquet integral hybrid technique for solving MAGDM problems with interval type 2 fuzzy numbers, Journal of Intelligent & Fuzzy Systems 30, 1301–1310
[31] Bhartia S.K, Singh S.R (2020) Interval-Valued Intuitionistic Fuzzy Linear Programming Problem, New Mathematics and Natural Computation 16, 53-71.
[32] Sidhu S.K, Kumar A. (2018) Mehar method to find the fuzzy optimal solution of bounded fully fuzzy linear programs with symmetric trapezoidal fuzzy numbers, Proc. Natl. Acad. Sci., India, Sect. A Phys 89, 241-248.
[33] Sun J, Lu Q. (2017) Regression analysis of a kind of trapezoidal fuzzy numbers based on a shape preserving operator, Journal of Data Analysis and Information Processing 5, 96-114.
[34] Yang Z, Yin Y. (2013) Robust fuzzy varying coefficient regression analysis with crisp inputs and gaussian fuzzy output, Journal of Computing Science and Engineering 7, 263-27.
[35] Zhang D, Lu Q. (2016) robust regression analysis with L-R type fuzzy input variables and fuzzy output variable, Journal of Data Analysis and Information Processing 4, 64-80.
[36] Ebrahimnejad A. (2019) An effective computational attempt for solving fully fuzzy linear programming using MOLP problem, Journal of Industrial and Production Engineering, DOI: 10.1080/21681015.2019.1585391.
[37] Jimenez M. (2020) Fuzzy pareto solutions in fully fuzzy multi objective linear programming, AISC 991, 509–517.
[38] Pérez-Cañedo B, Rosete A, Verdegay J.L. (2020) A fuzzy goal programming approach to fully fuzzy linear regression, CCIS 1238, 677–688.
[39] Sakawa M, Yano H (1992) Multiobjective fuzzy linear regression analysis for fuzzy input–output data. Fuzzy Sets Syst 47,173–181