Designing a robust integrated supply chain model for blood products in times of crisis and uncertainty using NSGA II and MOPSO algorithms
Subject Areas : Statisticsmeysam karamipour 1 , Mohammad Ali Afshar Kazemi 2 , Ezzatollah AsghariZadeh 3 , Adel Azar 4
1 - Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Associate Prof., Department of Industrial Management, Central Tehran Branch, Islamic Azad University, Tehran , Iran
3 - Associate Prof., Department of Industrial Management, Faculty of Management, University of Tehran, Tehran, Iran
4 - full Prof., Department of Industrial Management, Faculty of Management and Economic, Tarbiat Modares University, Tehran, Iran
Keywords: عدم قطعیت, مدل استوار, الگوریتم رقابتی استعماری, الگوریتم NSGA II,
Abstract :
The field of blood supply chain has become one of the most important fields of research due to its significant importance in saving human lives. After an earthquake, a large number of injured people suffer from severe bleeding and burns that require blood transfusions as soon as possible; Therefore, proper management of the blood supply to the injured is important, and the slightest negligence will endanger human lives. In such a situation, providing assistance to the injured and those in need of blood is very important and the loss of life and losses due to anemia should be greatly reduced by responding to the demand in a timely manner. In the present paper, a two-objective mathematical model under crisis and uncertainty is presented. Due to the high level of uncertainty in the blood supply chain in critical situations and due to the nature of uncertain parameters, a robust planning approach has been used. Also, due to the NP-hard nature of the problem, NSGA II and MOPSO algorithms have been used. To evaluate the results of the model, a real case study in Tehran has been used and sensitivity analysis has been performed on important parameters of the model. Finally, the computational results indicate that the quality of the output solutions of the NSGA II algorithm is better than the MOPSO algorithm and solves the problems in less time; Therefore, the results indicate the stability of the answers of the studied algorithm.
[1] B. Zahiri, S. Torabi, M. Mousazadeh, and S. Mansouri, "Blood collection management: Methodology and application," Applied Mathematical Modelling, vol. 39, no. 23-24, pp. 7680-7696, 2015.
[2] J. Beliën and H. Forcé, "Supply chain management of blood products: A literature review," European Journal of Operational Research, vol. 217, no. 1, pp. 1-16, 2012.
[3] W.-C. Lee and B.-W. Cheng, "An intelligent system for improving performance of blood donation," vol. 18, no. 2, pp. 173-185, 2011.
[4] س. ذوالفقاریانارکی, اطلس جامع انتقال خون. سازمان انتقال خون, 1391.
[5] A. F. Osorio, S. C. Brailsford, and H. K. Smith, "A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making," International Journal of Production Research, vol. 53, no. 24, pp. 7191-7212, 2015.
[6] I. Civelek, I. Karaesmen, and A. Scheller-Wolf, "Blood platelet inventory management with protection levels," European Journal of Operational Research, vol. 243, no. 3, pp. 826-838, 2015.
[7] A. Mansur, I. Vanany, and N. I. Arvitrida, "Challenge and opportunity research in blood supply chain management: a literature review," in MATEC Web of Conferences, 2018, vol. 154: EDP Sciences, p. 01092.
[8] A. E. Ezugwu, M. O. Olusanya, and P.
Govender, "Mathematical model formulation and hybrid metaheuristic optimization approach for near-optimal blood assignment in a blood bank system," Expert Systems with Applications, vol. 137, pp. 74-99, 2019.
[9] R. Ramezanian and Z. Behboodi, "Blood supply chain network design under uncertainties in supply and demand considering social aspects," Transportation Research Part E: Logistics and Transportation Review, vol. 104, pp. 69-82, 2017.
[10] S. B. Ghorashi, M. Hamedi, and R. Sadeghian, "Modeling and optimization of a reliable blood supply chain network in crisis considering blood compatibility using MOGWO," Neural Computing and Applications, pp. 1-28, 2019.
[11] S. Rajendran and A. R. Ravindran, "Inventory management of platelets along blood supply chain to minimize wastage and shortage," Computers & Industrial Engineering, vol. 130, pp. 714-730, 2019.
[12] B. Hamdan and A. Diabat, "A two-stage multi-echelon stochastic blood supply chain problem," Computers & Operations Research, vol. 101, pp. 130-143, 2019.
[13] M. R. G. Samani, S.-M. Hosseini-Motlagh, M. I. Sheshkol, and S.-N. Shetab-Boushehri, "A bi-objective integrated model for the uncertain blood network design with raising products quality," European Journal of Industrial Engineering, vol. 13, no. 5, pp. 553-588, 2019.
[14] ب. اسدیمقدم, ا. مردان, "ارائه یک مدل ریاضی جهت طراحی شبکه زنجیره تأمین خون هنگام بحران در شرایط عدم قطعیت,"ششمین کنفرانس بین المللی مهندسی صنایع و سیستمها (ICISE 2020), مشهد, 1399.
[15] N. Haghjoo, R. Tavakkoli-Moghaddam, H. Shahmoradi-Moghadam, and Y. Rahimi, "Reliable blood supply chain network design with facility disruption: A real-world application," Engineering Applications of Artificial Intelligence, vol. 90, p. 103493, 2020.
[16] حقیقی، احمدرضا، پیرهادی, نیکو، شهبازی اصل، محمد. (1398). یک مدل ریاضی برای بررسی جریان خون بهعنوان جریان سیال کراس در طول رگ گرفته شده. پژوهشهای نوین در ریاضی.5(20).15-30.
[17] یوسفینژاد, ویدا, نیک بخش, احسان. (1400). کنترل موجودی فرآوردههای خونی در شبکه بیمارستانی تحت شرایط عدم قطعیت. چشمانداز مدیریت صنعتی. doi: 10.52547/jimp.2021.184783.1108.
[18] کوچکی تاجانی, طاهر, محتشمی, علی, امیری, مقصود, احتشام راثی, رضا. (1400). ارائه مدل بهینهسازی استوار بهمنظور طراحی زنجیره تأمین خون جامع تحت شرایط عدمقطعیت عرضه و تقاضا. چشمانداز مدیریت صنعتی.11(1).81-116.
[19] R., Mousavi, and., Salehi-Amiri, A., Zahedi, A., & Hajiaghaei-Keshteli, M. (2021). Designing a supply chain network for blood decomposition by utilizing social and environmental factor. Computers & Industrial Engineering, 160, 107501.
[20] M., Shokouhifar., Sabbaghi, M. M., & Pilevari, N. (2021). Inventory management in blood supply chain considering fuzzy supply/demand uncertainties and lateral transshipment. Transfusion and Apheresis Science, 103103.