Coefficient estimates for a class of meromorphic bi-univalent functions
Subject Areas : StatisticsSafa Salehian 1 , Ahmad Motamednezhad 2
1 - Department of Mathematics.Gorgan Branch. Islamic Azad University, Gorgan, Iran
2 - Faculty of Mathematical Sciences, Shahrood University of Technology, P.O.Box 316-36155, Shahrood, Iran
Keywords: توابع دو- تک ارز مرومورفیک, چند جمله ای فابر, تقریب ضرایب, توابع مرومورفیک, مشتق q-ام,
Abstract :
Let 𝝨 be the class of meromorphic bi-univalent functions f of the formf(z)=z+b_0+∑_(n=1)^∞▒b_n/z^n ,which are univalent (analytic and one to one) on the domain Δ={z∈C∶1
[1] H. Airault, A. Bouali. Differential Calculus on the faber polynomials. Bull. Sci. Math. 130 (3): 179-222 (2006).
[2] H. Airault, J. Ren. An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sci. Math. 126(5): 343-367(2002).
[3] S. Bulut, N. Magesh, V. K. Balaji. Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions. Comptes Rendus Mathematique. 353(2): 113-116(2015).
[4] P. L. Duren. Univalent functions, Grundlehren der Mathematischen, Band 259, Springer, Tokyo, 1983.
[5] S. G. Hamidi, S. A. Halim, J. M. Jahangiri. Coefficient estimates for a class of meromorphic bi-univalent functions. Comptes Rendus Mathematique 351: 349-352 (2013).
[6] T. Janani, G. MurugusundaraMoor-thy. Coefficient estimates of meromorphic bi-starlike functions of complex order. Internat. J. Anal. Appl. 4 (1): 68-77(2014).
[7] G. P. Kapoor, A. K. Mishr. Coefficient estimates for inverses of starlike functions of positive order. J. Math. nal. Appl., 329(2): 922-934 (2007).
[8] J. G. Krzyz, R. J. Libera, E. J. Zlotkiewicz. Coefficients of inverse of regular starlike functions. Ann. Univ. Mariae Curie-Skodowska Sect. A 33: 103-109(1979).
[9] Y. Kubota. Coefficients of meromorphic univalent functions. Kōdai Math. Sem.Rep. 28: 253-261 (1976).
[10] G. Schober. Coefficients of inverses of meromorphic univalent functions. Proc. Amer. Math. Soc. 67(1): 111-116 (1977).
[11] M. Schiffer, Sur Un problème d’xtrémum de la representation conforme. Bull. Soc. Math. France., 66: 48-55 (1938).
[12] H. M. Srivastava, Ş. Altınkaya, S. Yalçın. Hankel determinant for a subclass of bi-nivalent functions defined by using a symmetric q-derivative operator, Filomat, 32(2): 503–516. (2018).
[13] Q.-H. Xu, H. M. Srivastava. Coefficient estimates for the inverses of a certain general class of spirallike functions, Appl. Math. Comput., 219: 7000-7011(2013).
[14] H.-G. Xiao, Q.-. Xu, Coefficient estimates for three generalized classes of meromorphic and bi-univalent functions, Filomat, 29 (7): 1601-1612 (2015) .