THE ROPER-SUFFRIDGE EXTENSION OPERATORS ON THE CLASS OF STRONG AND ALMOST SPIRALLIKE MAPPINGS OF TYPE $beta$ AND ORDER $alpha$
Subject Areas : Statistics
1 - Department of Mathematics, Basic Science Faculty, University of Bonab, Bonab, Iran.
2 - Department of Mathematics, Basic Science Faculty, University of Bonab, Bonab, Iran.
Keywords: تابعک مینکوفسکی, عملگر توسیع رافر- سافریج, دامنه رینهارد, نگاشتهای قویاً و تقریباً فنرگون,
Abstract :
Let$mathbb{C}^n$ be the space of $n$ complex variables. Let$Omega_{n,p_2,ldots,p_n}$ be a complete Reinhardt on$mathbb{C}^n$. The Minkowski functional on complete Reinhardt$Omega_{n,p_2,ldots,p_n}$ is denoted by $rho(z)$. The concept ofspirallike mapping of type $beta$ and order $alpha$ is defined.So, the concept of the strong and almost spirallike mappings of type$beta$ and order $alpha$ is discussed in this paper. From theSchwarz-Pick lemma, under certain conditions, we obtain that thegeneralized Roper-Suffridge operators preserve strong and almostspirallikeness of type $beta$ and order $alpha$ on bounded andcomplete Reinhardt domains $Omega_{n,p_1,cdots,p_n}$. For specificvalues for $alpha$ and $beta$, we obtain the correspondingdefinitions of strong spirallike mappings of type $beta$, strongand almost starlike mappings of order $alpha$, strong starlikemappings. Therefore we obtain the generalized Roper-Suffridgeoperators preserve strong spirallikeness of type $beta$, strong andalmost starlikeness of order $alpha$, strong starlikeness on thecorresponding domains. In particular, our results reduce to manywell-known results.
[1] Y. Cui, C. Wang and H. Liu, The invariance strong and almost starlik mapping of type and order , Acta Math. Sci. Ser. B, 35(6)(2015), 1454-1466.
[2] S. X. Feng, T. S. Liu and G. B. Ren, The growth and covering theorems for several mappings on the unit ball in complex Banach spaces, Chin. Ann. Math., 28A(2)(2007), 215-230.
[3] S. X. Feng and T. S. Liu, Modified Roper-Suffridge operator for some holomorphic mappings, Front. Math. Chin., 6(3)(2011), 411-426.
[4] S. Gong and T. S. Liu, On the Roper-Suffridge extension operator, J. Anal. Math., 88(2002), 397-404.
[5] S. Gong and T. S. Liu, The generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 284(2)(2003), 425-434.
[6] I. Graham and G. Kohr, Univalent mappings associated with the Roper-Suffridge extension operator, J. Anal. Math., 81(2000), 331-342.
[7] I. Graham and G. Kohr, Geometric function theory in one and higher dimensions, Marcel Dekker, New York, (2003).
[8] G. Kohr, Loewner chains and a modification of the Roper-Suffridge extension operator, Mathematica (Cluj), 48(1)(2006), 41-48.
[9] H. Li, S. Feng, Roper-Suffridge extension operator on a Reinhardt domain, Acta. Math. Sci., 34B (2014), No. 6, 1761-1774.
[10] T. S. Liu and S. Gong, The family of
starlike mappings. , Chin. Annal. Math. Ser. A., 23(3)(2002), 273-282.
[11] X. S. Liu and T. S. Liu, The generalized Roper-Suffridge extension operator on a Reinhardt domain and the unit ball in a complex Hilbert space, Chin. Annal. Math. Ser. A., 26(5)(2005), 721-730.
[12] T. S. Liu and G. B. Ren, The growth theorem for starlike mappings on bounded starlike circular domains, Chin. Annal. Math. Ser. B., 19(4)(1998), 401-408.
[13] J. R. Muir, A class of the Loewner chain preserving extention operators, Comput. Meth. func. Theo., 5(1)(2005), 237-251.
[14] C. Pommerenke, Univalent functions, Vandenhoek and Ruprecht, Gttingen, Germmany, (1975).
[15] S. Rahrovi, A. Ebadian and S. Shams, G-Loewner chains and parabolic starlike mappings in several complex variables, General Math., 20(2-3)(2012). 59-73.
[16] S. Rahrovi, A. Ebadian and S. Shams, Applications of the Roper-Suffridge Extension Operator to the Spirallike mappings of type , Acta Uni. Apul., 37(2014), 171-183.
[17] S. Rahrovi, Parabolic starlike mappings on the unit ball , Sahand Commu. Math. Anal., 3(1)(2016), 63-70.
[18] S. Rahrovi and H. Piri, The generalized Roper-Suffridge extension operator on the Rienhardt domains , J. Math. System Sci. 6(2016) 383-394.
[19] K. A. Roper and T. J. Suffridge, Convex mappings on the unit ball , J. Anal. Math., 65(1995), 333-347.
[20] J. Wang, Modified Roper-Suffridge for some subclasses of starlike mappings on Reinhardt domains, Act. Math. Sci., 33(6)(2013), 1627-1638.
[21] J. Wang and C. Gao, A new Roper-Suffridge extension operator on a Reinhardt domain, Abst. Appl. Anal.,(2011), 1-14.
[22] J. F. Wang and T. S. Liu, A modified Roper-Suffridge extension operator for some holomorphic mappings, Chin. Annal. Math. Ser. A., 31(4)(2010), 487-496.