The study on controlled g-frames and controlled fusion frames in Hilbert C*-modules
Subject Areas : Statistics
1 - Young Researchers and Elite Club Kahnooj Branch, Islamic Azad University, Kahnooj, Iran.
Keywords: *C-مدول هیلبرتی٬ قاب٬ g-قاب٬ قاب تلفیقی٬ قاب کنترل شده,
Abstract :
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*-algebra rather than in the field of complex numbers.In this paper, we define and characterize controlled g-frames and controlled fusion frames in Hilbert C*-modules. These are generalization of controlled frames in Hilbert C*-modules and also controlled g-frames and controlled fusion frames in Hilbert spaces. We show, similar in Hilbert space, every controlled g-frame in Hilbert C*-module is an usual g-frame. Also we study the relation between controlled fusion frames and fusion frames in Hilbert C*-modules. Finally we present a sufficient condition on a family of closed submodules to be a controlled fusion frame.
[1] R. J. Duffin. A.C. Schaeffer. A class of nonharmonic Fourier series. Transactions of the American Mathematical Society 72. 341-366. (1952).
[2] I. Daubechies. A. Grossmann.Y. Meyer. Painless nonorthogonal expansions. Journal of Mathematical Physics. 27. 1271-1283. (1986).
[3] O. Christensen. An Introduction to Frames and Riesz Bases. Birkhauser. Boston. (2003).
[4] I. Kaplansky. Algebra of type I. Annals of Mathematics.. 56. 460-472. (1952).
[5] M. Frank. D.R. Larson. A module frame concept for Hilbert C*-modules. in: Functional and Harmonic Analysis of Wavelets. San Antonio. TX. January 1999. Contemp. Math. 247. Amer. Math. Soc.. Providence. RI 207-233. (2000).
[6] E. C. Lance. Hilbert C*-Modules: A Toolkit for Operator Algebraists. London Math. Soc. Lecture Note Ser. 210. Cambridge Univ. Press. (1995).
[7] N. E. Wegge-Olsen. K-theory and C*-algebras a Friendly Approach. Oxford University Press. Oxford. England. (1993).
[8] M. Frank. D.R. Larson. Frames in Hilbert C*-modules and C*-algebras. Journal of Operator Theory 48. 273-314. (2002).
[9] W. Jing. Frames in Hilbert C*-modules. Ph. D. thesis. University of Central Florida
Orlando. Florida (2006).
[10] M. Rashidi-Kouchi. A. Nazari. M. Amini. On stability of g-frames and g-Riesz bases
in Hilbert C*-modules. International Journal of Wavelets. Multiresolution and Information Processing. 12(6). 1-16. (2014).
[11] A. Khosravi. B. Khosravi. Fusion frames and g-frames in Hilbert C*-modules. International Journal of Wavelets. Multiresolution and Information Processing. 6 (2008) 433–466.
[12] M. Rashidi-Kouchi and A. Rahimi. Controlled frames in Hilbert C*-modules. International Journal of Wavelets. Multiresolution and Information Processing.. 15(4). 1-15. (2017).
[13] A. Khosravi and K. Musazadeh. Controlled fusion frames. Methods of Functional Analysis and Topology. 18(3). 256-265. (2012).