2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework
Subject Areas : Internet and Web based ComputingAzam Seilsepour 1 , Reza Ravanmehr 2 , Hamid Reza Sima 3
1 - Department of Computer Engineering, Central Tehran Branch, Islamic Azad University
2 - Computer Engineering Department, Central Tehran Branch, Islamic Azad University,
3 - Department of Computer Engineering, Central Tehran Branch, Islamic Azad University
Keywords:
Abstract :
[1] López, V., Del Río, S., Benítez, J.M. and Herrera, F., 2015. Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data. Fuzzy Sets and Systems, 258, pp.5-38.
[2] Chen, C.P. and Zhang, C.Y., 2014. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information sciences, 275, pp.314-347.
[3] Pang, B. and Lee, L., 2008. Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1–2), pp.1-135.
[4] Birjali, M., Beni-Hssane, A. and Erritali, M., 2017. Machine learning and semantic sentiment analysis based algorithms for suicide sentiment prediction in social networks. Procedia Computer Science, 113, pp.65-72.
[5] Öztürk, N. and Ayvaz, S., 2018. Sentiment analysis on Twitter: A text mining approach to the Syrian refugee crisis. Telematics and Informatics, 35(1), pp.136-147.
[6] Pandey, A.C., Rajpoot, D.S. and Saraswat, M., 2017. Twitter sentiment analysis using hybrid cuckoo search method. Information Processing & Management, 53(4), pp.764-779.
[7] Xiong, S., Lv, H., Zhao, W. and Ji, D., 2018. Towards Twitter sentiment classification by multi-level sentiment-enriched word embeddings. Neurocomputing, 275, pp.2459-2466.
[8] Morente-Molinera, J.A., Kou, G., Peng, Y., Torres-Albero, C. and Herrera-Viedma, E., 2018. Analysing discussions in social networks using group decision making methods and sentiment analysis. Information Sciences, 447, pp.157-168.
[9] Araque, O., Corcuera-Platas, I., Sanchez-Rada, J.F. and Iglesias, C.A., 2017. Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Systems with Applications, 77, pp.236-246.
[10] Howells, K. and Ertugan, A., 2017. Applying fuzzy logic for sentiment analysis of social media network data in marketing. Procedia computer science, 120, pp.664-670.
[11] Wang, X., Zhang, C., Ji, Y., Sun, L., Wu, L. and Bao, Z., 2013, April. A depression detection model based on sentiment analysis in micro-blog social network. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 201-213). Springer, Berlin, Heidelberg.
[12] Yu, Y. and Wang, X., 2015. World Cup 2014 in the Twitter World: A big data analysis of sentiments in US sports fans’ tweets. Computers in Human Behavior, 48, pp.392-400.
[13] https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_652, Last accessed on April 2019.
[14] Pak, A. and Paroubek, P., 2010, May. Twitter as a corpus for sentiment analysis and opinion mining. In LREc, Vol. 10, No. 2010, pp. 1320-1326.