A Detailed Exploration of Usability Statistics and Application Rating Based on Wireless Protocols
Subject Areas : Networking TechnologiesAbbas Khan 1 , Dr. Mohammad Hanif Ali 2 , Dr. A. K. M. Fazlul Haque 3 , Chandan Debnath 4 , DR. Md. Ismail Jabiullah 5
1 - CSE, FSIT, Daffodil International University, Dhaka Bangladesh
2 - Department of Computer Science and Engineering
Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.
3 - Professor, Department of Electrical and Electronic Engineering, Daffodil International University, Dhaka, Bangladesh
4 - Department of Computer Science and Engineering,Daffodil Institute of IT,Dhaka,Bangladesh
5 - Professor , Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
Keywords:
Abstract :
1. Bhagwat, P.J.I.I.C., Bluetooth: technology for short-range wireless apps. 2001. 5(3): p. 96-103; Available from: https://ieeexplore.ieee.org/abstract/document/935183/.
2. Kabir, A. and A.A. Khan, Comparison Among Short Range Wireless Network: Bluetooth, ZigBee and Wifi, in Computer Network. 2010, KTH(The Royal Institute of Technology). p. 42.
3. Gomez, C., J. Oller, and J.J.S. Paradells, Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology. 2012. 12(9): p. 11734-11753; Available from: https://www.mdpi.com/1424-8220/12/9/11734.
4. Bisdikian, C.J.I.C.M., An overview of the Bluetooth wireless technology. 2001. 39(12): p. 86-94; Available from: http://www.di-srv.unisa.it/~vitsca/RC-0809I/pdf00004.pdf.
5. Park, W., Bluetooth Specification Version 3.0 + HS [Vol 0]. 2009.
6. Marquess, K.J.B.T.W.S.B.T.W.S.R.M., Bluetooth specification version 4.0 [vol 0]. 2012. 29.
7. Society, I.C. and L.M.S. Committee, Wireless Medium Access control (MAC) and physical Layer (PHY) Specifications for low Rate wireless personal Area Networks (WPANs). 2006; Available from: http://www.di.univr.it/documenti/OccorrenzaIns/matdid/matdid878837.pdf.
8. Anonymous, The 802.11 protocol stack and physical layer. 2010; Available from: https://www.scribd.com/doc/13628928/802-11-Protocol-Stack-and-Physical-Layer.
9. Center, W. Point Coordination Function (PCF). 2007; Available from: http//www.wireless-center.net/WLANs-WPANs/1436.html.
10. Terzis, A.J.I.J.o.S.N., Minimising the effect of WiFi interference in 802.15. 4 wireless sensor networks. 2007. 3(1): p. 43-54; Available from: https://dl.acm.org/citation.cfm?id=1359001.
11. Thonet, G., et al., Zigbee-wifi coexistence. 2008. 1: p. 1-38; Available from: http://vip.gatech.edu/wiki/images/8/8e/Zigbee_WiFi_Coexistence_-_White_Paper_and_Test_Report.pdf.
12. Kurose, J. and K. Ross, Computer Networking: A Top Down Approach, 2012. 6 ed. 2012: Addison-Wesley.
13. Renardi, M.B., et al., Baggage Claim in Airports Using Near Field Communication. 2017. 7(2): p. 442-448; Available from: https://pdfs.semanticscholar.org/fb67/229755d96cf01e844719658046e2fe14fb76.pdf.
14. Khan, M.A.A., M.A.J.D.I.U.J.O.S. Kabir, and TECHNOLOGY, COMPARISON AMONG SHORT RANGE WIRELESS NETWORKS: BLUETOOTH ZIGBEE & WI-FI. 2016. 11(1): p. 1; Available from: http://dspace.library.daffodilvarsity.edu.bd:8080/handle/20.500.11948/1466.
15. Nashwan, S.J.I.J.o.C.S. and N. Security, Secure Authentication Protocol for NFC Mobile Payment Systems. 2017. 17(8): p. 256-262; Available from: https://pdfs.semanticscholar.org/9dda/9164f84653c56ae51b9c3163ea4ffc9355b4.pdf.
16. Badra, M. and R.B.J.P.C.S. Badra, A lightweight security protocol for NFC-based mobile payments. 2016. 83: p. 705-711; Available from: https://www.sciencedirect.com/science/article/pii/S1877050916301879.
17. El Madhoun, N. and G. Pujolle. Security enhancements in emv protocol for nfc mobile payment. in 2016 IEEE Trustcom/BigDataSE/ISPA. 2016. IEEE.
18. Tung, Y.-H., W.-S.J.J.o.e.s. Juang, and technology, Secure and efficient mutual authentication scheme for NFC mobile devices. 2017. 15(3): p. 240-245; Available from: http://www.xml-data.org/DZKJDXXBYWB/html/20170306.htm.
19. Lazaro, A., R. Villarino, and D.J.S. Girbau, A survey of NFC sensors based on energy harvesting for IoT applications. 2018. 18(11): p. 3746; Available from: https://www.mdpi.com/1424-8220/18/11/3746.
20. Nadzir, N.M., et al., Long-Range Monitoring System with PDMS Material. 2018. 10(3): p. 974-9; Available from: https://pdfs.semanticscholar.org/465e/c30ab2dc23ed68bc36f4d7fb8d7ba8ed3798.pdf.
21. Harnaningrum, L., NFC Communication Protocol. International Journal of Engineering and Computer Science, 2018. 7(9): p. 24197-24205; Available from: http://ijecs.in/index.php/ijecs/article/view/4178.
22. Meybodi, M.R. and H. Beigy, A Two-Threshold Guard Channel Scheme for Minimizing Blocking Probability in Communication Networks. International Journal of Engineering, 2004. 17(3): p. 247-264; Available from: http://www.ije.ir/article_71528_3644b4c891eb9526269b7b32f906c5be.pdf.
23. Joseph, R., M. Rajappa, and D.J.I.J.o.E. David, Improving Bandwidth-power Efficiency of Homogeneous Wireless Networks Using On-meet Threshold Strategy (RESEARCH NOTE). 2014. 27(9): p. 1349-1358; Available from: http://www.ije.ir/article_72372_3ed44785a0bd686ffa2422686a95fb2e.pdf.
24. Pastor, S., et al., A Real-time Motion Tracking Wireless System for Upper Limb Exosuit Based on Inertial Measurement Units and Flex Sensors. 2019. 32(6): p. 820-827; Available from: http://www.ije.ir/article_89313_1f02a9273a56b769ea784d11c067ed86.pdf.
25. Taghizadeh, S.R., LEBRP - A Lightweight and Energy Balancing Routing Protocol for Energy-Constrained Wireless Ad Hoc Networks. International Journal of Engineering, 2014. 27(1): p. 33-38; Available from: http://www.ije.ir/article_72229_870cb6e00d464ccb898f3fc4a2b6544e.pdf.