Type-2 Fuzzy Logic Approach To Increase The Accuracy Of Software Development Effort Estimation
Subject Areas : Embedded SystemsZahra Barati 1 , Mahdi Jafari Shahbazzadeh 2 , Vahid Khatibi Bardsiri 3
1 - Computer Engineering Department, Kerman Branch, Islamic Azad University, Kerman, Iran.
2 - Electrical Engineering Department, Kerman Branch, Islamic Azad University,Kerman, Iran.
3 - Computer Engineering Department, Bardsir Branch, Islamic Azad University, Kerman, Iran
Keywords:
Abstract :
[1] Mohanty, S.K., Bisoi, A.K., “Software effort estimation approaches-a review”, International Journal of Internet Computing, 2012, 1(3): 82-88.
[2] Gharehchopogh, F. S. and Z. A. Dizaji (2014). A New Approach in Software Cost Estimation with Hybrid of Bee Colony and Chaos Optimizations Algorithms, MAGNT RESEARCH REPORT.
[3] Bardsiri, A.K. and S.M. Hashemi, “Software Effort Estimation: A Survey of Well-known Approaches”. International Journal of Computer Science Engineering (IJCSE), 2014. 3(1): p. 46-50.
[4] Benala, T. R., et al. (2014). Software Effort Estimation Using Data Mining Techniques. ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol I, Springer
[5] Heidrich, J., M. Oivo, and A. Jedlitschka, “Software productivity and effort estimation”. Journal of Software: Evolution and Process, 2015. 27(7): p. 465-466.
[6] Elish, M. O., et al. (2013). "Empirical study of homogeneous and heterogeneous ensemble models for software development effort estimation." Mathematical Problems in Engineering 2013.
[7] Abbas, S.A., et al., “Cost estimation: A survey of well-known historic cost estimation techniques”. Journal of Emerging Trends in Computing and Information Sciences, 2012. 3(4): p. 612-636.
[8] Kumari, S. and S. Pushkar, “Performance analysis of the software cost estimation methods: a review”. International Journal of Advanced Research in Computer Science and Software Engineering, 2013. 3(7): p. 229-238.
[9] Esplanada, P.S. and E.A. Albacea, “Assessing Accuracy of Formal Estimation Models and Development of an Effort Estimation Model for Industry Use”. 2012.
[10] Ramesh, K. and P. Karunanidhi, “Literature Survey On Algorithmic And Non-Algorithmic Models For Software Development Effort Estimation”. International Journal Of Engineering And Computer Science ISSN, 2013: p. 2319-7242.
[11] Potdar, S. M., et al. (2014). "Literature Survey on Algorithmic Methods for Software Development Cost Estimation." International Journal of Computer Technology and Applications 5(1): 183.
[12] Basha, S. and D. Ponnurangam, “Analysis of empirical software effort estimation models”. arXiv preprint arXiv:1004.1239, 2010.
[13] Mendel, J. M. “Type-2 fuzzy sets and systems: an overview” Computational Intelligence Magazine, IEEE , 2007, 2(1): 20-29.
[14] Kashyap, S.K. IR and color image fusion using interval type 2 fuzzy logic system. in Cognitive Computing and Information Processing (CCIP), 2015 International Conference on. 2015. IEE.
[15] Gupta, N. “Comparative study of type-1 and type-2 fuzzy ystems”. Int. J. Eng. Res. Gen. Sci, 2, 2014, 195-198.
[16] Hassani, H., & Zarei, J. “Interval Type-2 fuzzy logic controller design for the speed control of DC motors”. Systems Science & Control Engineering, 2015, 3(1), 266-273.
[17] Singh, R., Kainthola, A., & Singh, T. N. “Estimation of elastic constant of rocks using an ANFIS approach”. Applied Soft Computing, 2012, 12(1), 40-45.
[18] Malathi, S., & Sridhar, S. “Efficient estimation of effortusing machine-learning technique for software cost”. Indian Journal of Science and Technology, 2012. 5(8), 3194-3196.
[19] Lopez-Martin, Cuauhtemoc, “A fuzzy logic model for predicting the development effort of short scale programs based upon two independent variables Applied Soft Computing” , 2011, 724–732.