E2DR: Energy Efficient Data Replication in Data Grid
Subject Areas : Cloud, Cluster, Grid and P2P ComputingKobra Bagheri 1 , Mehran Mohsenzadeh 2
1 - Department of Computer, Science and Research Branch Islamic Azad University, Tehran , Iran.
2 - Department of Computer, Science and Research Branch Islamic Azad University, Tehran, Iran.
Keywords:
Abstract :
[1] susan v. Vrbsky, ming lei, karl smith and jeff byrd ,data replication and power consumption in Data grids, 2nd ieee international conference on cloud computing technology and science,ieee(2010).
[2] Tarek Hamrouni,Sarra Slimani ,A critical survey of data grid replication strategies based on data mining techniques ,ICCS 2015 International Conference on Computational Sience volume 55, (2015), 2779 – 2788.
[3] somayeh abdi and somayeh mohamadi, two level job scheduling and data Replication in data grid, international journal of grid computing & applications (ijgca) vol.1, no.1(2010).
[4] ming tang, bu-sung lee, xueyan tang, chai-kiat yeo , The impact of data replication on Job scheduling performance in the data grid, future generation computer systems, volume 22, issue 3 ( 2006), 254-268.
[5] najme mansouri, gholam hosein dastghaibyfard, A dynamic replica management strategy in data grid, journal of network and computer applications 35 (2012),siencedirect,( 2012), 1297–1303.
[6] JEMAL ABAWAJY ,DATA REPLICATION APPROACH WITH CONSISTENCY GUARANTEE FOR DATA GRID, IEEE TRANSACTION ON COMPUTERS , (2015), 1-17.
[7] Alireza Souri , Amir Masoud Rahmani, Survey for replica placement techniques in data grid environment , I.J.Modern Education and computer science,2014, (2014), 46-51.
[8] anton beloglazov, rajkumar buyya, young choon lee, albert zomaya,”a taxonomy and survey of Energy-efficient data centers And cloud computing systems,elsevier , (2011), 47-111.
[9] x. Fan, w.d. weber, l.a. barroso, power provisioning for a warehouse-sized computer, In: proceedings of the 34th annual international symposium on computer architecture (isca2007), acm new york, ny, usa, (2007), 13–23.
[10] m. Allalouf, y. Arbitman, m. Factor, r. I. Kat, k. Meth, and D. Naor. Storage modeling for power estimation. In systor ’09: proceedings of systor 2009: the israeli experimental Systems conference, new york, ny, usa.Acm, (2009), 1-10.
[11] c. Patel, r. Sharma, c. Bash, and s. Graupner, Energy aware Grid: global workload placement based on energy efficiency. Technical report, hp laboratories,(2002).
[12] j. Torres, d. Carrera, k. Hogan, r. Gavalda, v. Beltran, and N. Poggi, Reducing wasted resources to help achieve green Data centers. In international symposium on parallel and Distributed processing (ipdps 2008)Ieee, (2008), 1-8.
[13] s. Srikantaiah, a. Kansal, and f. Zhao. Energy aware consolidation for cloud computing. In proceedings of hotpower ’08 Workshop on power aware computing and systems(2008).
[14] a.-c. Orgerie and l. Laurent. When clouds become green: The green open cloud architecture. In international conference On parallel computing (parco 2009), lyon, france(2009).
[15] Junaid Shuja, Kashif Bilal, Sajjad A. Madani, Mazliza Othman,Rajiv Ranjan, Pavan Balaji, and Samee U. Khan, Survey of Techniques and Architectures for Designing Energy-Efficient Data Centers, IEEE SYSTEMS JOURNAL, ( 2014), 1-13.
[16] c. Gunaratne, k. Christensen, and b. Nordman. Managing Energy consumption costs in desktop pcs and lan switches with Proxying, split tcp connections, and scaling of link speed. Int. J. Netw. Manag., 15(5), (2005), 297–310.
[17] d. C. Snowdon, s. Ruocco, and g. Heiser. Power management and dynamic voltage scaling: myths and facts. In Proceedings of the 2005 workshop on power aware real-time Computing, new jersey, usa(2005).
[18] h. Dietz and w. Dieter. Compiler and runtime support For predictive control of power and cooling. Parallel and Distributed processing symposium, international, (2006), 0-345.
[19] x. Fan, w.-d. Weber, and l. A. Barroso. Power provisioning For a warehouse-sized computer. In isca ’07: proceedings Of the 34th annual international symposium on computer Architecture, new york, ny, usa.Acm (2007), 13–23.
[20] f. Bellosa, s. Kellner, m. Waitz, and a. Weissel. Event-driven Energy accounting for dynamic thermal management. In Proceedings of the workshop on compilers and operating Systems for low power (colp’03), (2003), 1–10.
[21] a. Merkel and f. Bellosa. Balancing power consumption in Multiprocessor systems. In sigops operating systems review, 40(4), (2006), 403–414.
[22] j. S. Chase, d. C. Anderson, p. N. Thakar, a. M. Vahdat, and R. P. Doyle. Managing energy and server resources in hosting Centers. In sosp ’01: 18th acm symposium on operating Systems principles, new york, ny, usa,. Acm. , (2001), 103- 116.
[23] r. Jejurikar and r. Gupta. Energy aware task scheduling With task synchronization for embedded real-time systems. In Computer-aided design of integrated circuits and systems, Ieee transactions on. Ieee, (2006), 1024– 1037.
[24] g. Von laszewski, l. Wang, a. Younge, and x. He. Poweraware scheduling of virtual machines in dvfs-enabled clusters. In ieee international conference on cluster computing and Workshops (cluster ’09),( 2009), 1–10.
[25] Dejene Boru· Dzmitry Kliazovich· Fabrizio Granelli· Pascal Bouvry· Albert Y. Zomaya , “Energy-efficient data replication in cloud computing datacenters” , springer , (2015), 1-18.
[26] Jemal Abawajy , Data Replication Approach With Consistency Guarantee for Data Grid”, IEEE TRANSACTIONS ON COMPUTERS DECEMBER 2014, (2014), 1-17.
[27] ali elghirani, riky subrata, albert y. Zomaya, and ali al mazari., performance enhancement Through hybrid replication and genetic algorithm co-scheduling in data grids, advanced Networks research group, school of information technologies, university of sydney, nsw Australia(2006).
[28] sang-min park, jai-hoon kim, young-bae ko: dynamicgrid replication strategy based on Internet hierarchy, book series lecture notes in computer science, grid and cooperative Omputing book,publisher springer, august 2005, volume 3033/2004, (2005), 838-846.
[29] k. Ranganathan and i. Foster, identifying dynamic replication strategies for a high Performance data grid. In proceedings of the international grid computing workshop, Denver, colorado, usa(2001).
[30] i. Foster, k. Ranganathan, design and evaluation of dynamic replication strategies for high Performance data grids, in: proceedings of international conference on computing in high Energy and nuclear physics, beijing, china, (2001).
[31] p. K. Suri, manpreet singh, js2dr2 : an effective two-level job scheduling algorithm and Two-phase dynamic replication strategy for data grid, 2009 international conference on advances in computing, control, and telecommunication technologies,ieee, (2009), 232-237.
[32] k. Sashi, a.s. thanamani, a new dynamic replication algorithm for European Data grid, in: proceedings of the third annual acm bangalore conference, 17(2010).
[33] Leyli mohammad khanli , ayaz isazadeh , tahmuras n. Shishavan, phfs: a dynamic replication method, to decrease access latency in the multi-tier Data grid, future generation computer systems 27,(2011), 233–244.
[34] m. Tang, b.-s. Lee, c.-k. Yeo, and x. Tang, dynamic Replication algorithms for the multi-tier data grid, future Generation computer systems, vol. 21, (2005), 775-790.
[35] Mohammad Shorfuzzaman, Peter Graham, Rasit Eskicioglu Distributed Popularity Based Replica Placement in Data Grid Environments, International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2010
[36] T.A.Abdurrab , FIRE: A File Reunion Based Data Replication Strategy for Data Grids.(2010).