Genome-Wide Analysis Identifies Heat Stress Resistance Selection Signatures in Pakistani Indigenous Chickens
Subject Areas :S. Hosseinzadeh 1 , S.A. Rafat 2 , S.R. Fiddaman 3 , A. Javanmard 4 , K. Hasanpur 5
1 -
2 -
3 -
4 -
5 -
Keywords: chicken, heat tolerance, signatures of selection, whole genome,
Abstract :
The chicken genome has evolved under natural and artificial selection for thousands of years, resulting in substantial genetic diversity among populations worldwide. This diversity allows the investigation of ge-nomic regions under selection and provides valuable insights into mechanisms of adaptation. In this study, we analyzed genomic data using various statistical approaches including fixation index (Fst), nucleotide diversity (π), and Tajima’s D were applied to identify selective signatures in indigenous chickens from Pakistan in comparison to White Leghorn chickens. We identified, 34 candidate genes associated with heat tolerance were identified, including well known stress related genes such as HSF3, HSF4, and RPTOR. These genes were significantly enriched in gene ontology (GO) terms related to stress response, protein folding, and cellular homeostasis .These findings highlight the important role of selection in shaping ge-nomic differentiation among chicken populations and provide a deeper understanding of the genetic basis of adaptation to environmental stress.
Ahmad R., Yu Y.H., Hsiao F.S., Su C.H., Liu H.C., Tobin I., Zhang G. and Cheng Y.H. (2022). Influence of heat stress on poultry growth performance, intestinal inflammation, and immune function and potential mitigation by probiotics. Animals. 12, 2297-2306.
Ajayi O.O., Peters S.O., De Donato M., Sowande S.O., Mujibi F.D.N., Morenikeji O.B., Thomas B.N., Adeleke M.A. and Imumorin I.G. (2018). Computational genome-wide identification of heat shock protein genes in the bovine genome. F1000Res. 7, 1504-1514.
Aolymat I., Hatmal M.M.M. and Olaimat A.N. (2023). The emerging role of heat shock factor 1 (HSF1) and heat shock proteins (HSPs) in ferroptosis. Pathophysiology. 30, 63-82.
Baird N.A., Douglas P.M., Simic M.S., Grant A.R., Moresco J.J., Wolff S.C., Yates J.R., Manning G. and Dillin A. (2014). HSF-1–mediated cytoskeletal integrity determines thermotolerance and life span. Science. 346, 360-363.
Bajpai A., Ishii T., Miyauchi K., Gupta V., Nishio-Masaike Y., Shimizu-Yoshida Y., Kubo M. and Kitano H. (2017). Insights into gene expression profiles induced by Socs3 depletion in keratinocytes. Sci. Rep. 7, 15830-15838.
Brugaletta G., Teyssier J.R., Rochell S.J., Dridi S. and Sirri F. (2022). A review of heat stress in chickens. Part I: Insights into physiology and gut health. Front. Physiol. 13, 1535-1544.
Buffalo V. and Coop G. (2020). Estimating the genome-wide contribution of selection to temporal allele frequency change. Proc. Natl. Acad. Sci. 117, 20672-20680.
Carow B. and Rottenberg M.E. (2014). SOCS3, a major regulator of infection and inflammation. Front. Immunol. 5, 58-67.
Chang Y.C., Ding Y., Dong L., Zhu L.J., Jensen R.V. and Hsiao L.L. (2018). Differential expression patterns of housekeeping genes increase diagnostic and prognostic value in lung cancer. PeerJ. 6, e4719.
Charlesworth B. and Jensen J.D. (2021). Effects of selection at linked sites on patterns of genetic variability. Ann. Rev. Ecol. Evol. Syst. 52, 177-197.
Chauhan S.S., Rashamol V.P., Bagath M., Sejian V. and Dunshea F.R. (2021). Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int. J. Biometeorol. 65, 1231-1244.
Chowdhury V.S., Han G., Eltahan H.M., Haraguchi S., Gilbert E.R., Cline M.A., Cockrem J.F., Bungo T. and Furuse M. (2021). Potential role of amino acids in the adaptation of chicks and market-age broilers to heat stress. Front. Vet. Sci. 7, 610541.
Dadshani S., Mathew B., Ballvora A., Mason A.S. and Léon J. (2021). Detection of breeding signatures in wheat using a linkage disequilibrium-corrected mapping approach. Sci. Rep. 11, 5527-5536.
Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T. and McVean G. (2011). The variant call format and VCFtools. Bioinformatics. 27, 2156-2158.
Delacher M., Schmidl C. and Herzig Y. (2019). Rbpj expression in regulatory T cells is critical for restraining TH2 responses. Nat. Commun. 10, 1621-1630.
Fábián A., Péntek B.K., Soós V. and Sagi L. (2024). Heat stress during male meiosis impairs cytoskeletal organization, spindle assembly and tapetum degeneration in wheat. Front. Plant Sci. 14, 1314021-1314030.
Fathi M.M., Galal A., Radwan L.M., Abou-Emera O.K. and Al-Homidan I.H. (2022). Using major genes to mitigate the deleterious effects of heat stress in poultry: an updated review. Poult. Sci. 101, 102157-102167.
Habeeb A.A., Gad A.E. and Atta M.A. (2018). Temperature-humidity indices as indicators to heat stress of climatic conditions with relation to production and reproduction of farm animals. Int. J. Biotechnol. Recent Adv. 1, 35-50.
He F., Ru X. and Wen T. (2020). NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci. 21, 4777-4785.
Ibrahim A.M., Sabet S., El-Ghor A.A., Kamel N., Anis S.E., Morris J.S. and Stein T. (2018). Fibulin-2 is required for basement membrane integrity of mammary epithelium. Sci. Rep. 8, 14139-14146.
Ito S. and Nagata K. (2017). Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin. Cell Dev. Biol. 62, 142-151.
Khosravinia H. (2016). Mortality, production performance, water intake and organ weight of the heat-stressed broiler chicken given savory (Satureja khuzistanica) essential oils through drinking water. J. Appl. Anim. Res. 44, 273-280.
Konopiński M.K., Fijarczyk A.M. and Biedrzycka A. (2023). Complex patterns shape immune genes diversity during invasion of common raccoon in Europe – selection in action despite genetic drift. Evol. Appl. 16, 134-151.
Li X., Lan F., Chen X., Yan Y., Li G., Wu G., Sun C. and Yang N. (2024). Runs of homozygosity and selection signature analyses reveal putative genomic regions for artificial selection in layer breeding. BMC Genom. 25, 638-647.
Lin H., Jiao H.C., Buyse J. and Decuypere E. (2006). Strategies for preventing heat stress in poultry. World’s Poult. Sci. J. 62, 71-86.
Loyau T., Berri C., Bedrani L., Metayer-Coustard S., Praud C., Duclos M.J., Tesseraud S., Rideau N., Everaert N., Yahav S. and Mignon-Grasteau S. (2013). Thermal manipulation of the embryo modifies the physiology and body composition of broiler chickens reared in floor pens without affecting breast meat processing quality. J. Anim. Sci. 91, 3674-3685.
Lu X. and Ruden D.M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso 2; iso 3. Fly (Austin). 6, 80-92.
Maiworm M. (2024). The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Front. Neurol. 15, 1385042-1385051.
Musskopf M.K., de Mattos E.P., Bergink S. and Kampinga H.H. (2018). HSP40/DNAJ Chaperones. John Wiley & Sons, Ltd.; eLS. Chichester, UK.
Passamonti M.M., Somenzi E., Barbato M., Chillemi G., Colli L., Joost S., Milanesi M., Negrini R., Santini M., Vajana E. and Williams J.L. (2021). The quest for genes involved in adaptation to climate change in ruminant livestock. Animals. 11, 2833-2843.
Qaid M.M. and Al-Garadi M.A. (2021). Protein and amino acid metabolism in poultry during and after heat stress: A review. Animals. 11, 1167.
Qiu X.B., Shao Y.M., Miao S. and Wang L. (2006). The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63, 2560-2570.
Schulte J. and Littleton J.T. (2011). The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Curr. Trends Neurol. 5, 65-74.
Shi H., Li T., Su M., Wang H., Li Q., Lang X. and Ma Y. (2023). Whole genome sequencing revealed genetic diversity, population structure, and selective signature of Panou Tibetan sheep. BMC Genom. 24, 50-58.
St-Pierre N.R., Cobanov B. and Schnitkey G. (2003). Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86, 52-77.
Velichko A.K., Markova E.N., Petrova N.V., Razin S.V. and Kantidze O.L. (2013). Mechanisms of heat shock response in mammals. J. Dairy Sci. 70, 4229-4241.
Voelkl K., Gutiérrez-Ángel S., Keeling S., Koyuncu S., da Silva Padilha M., Feigenbutz D., Arzberger T., Vilchez D., Klein R. and Dudanova I. (2023). Neuroprotective effects of hepatoma-derived growth factor in models of Huntington’s disease. Life Sci. Allian. 6, 11-19.
Wang Y.R., Hessen D.O., Samset B.H. and Stordal F. (2022). Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens. Environ. 280, 113181-113190.
Wu B., Qiao J., Wang X., Liu M., Xu S. and Sun D. (2021). Factors affecting the rapid changes of protein under short-term heat stress. BMC Genom. 22, 263-272.
Xu X., Ng B., Sim B., Radulescu C.I., Yusof N.A.B.M., Goh W.I., Lin S., Lim J.S.Y., Cha Y., Kusko R. and Kay C. (2020). pS421 huntingtin modulates mitochondrial phenotypes and confers neuroprotection in an HD hiPSC model. Cell Death Dis. 11, 809-818.
Ye S., Song H., Ding X., Zhang Z. and Li J. (2020). Pre-selecting markers based on fixation index scores improved the power of genomic evaluations in a combined Yorkshire pig population. Animal. 14, 1555-1564.
