AI-driven Design and Discovery of Next-generation Genome Editors for Ultra-high Specificity and Efficiency
Subject Areas : Biotechnological Journal of Environmental Microbiology
Dr Abdul Razak Mohamed Sikkander
1
,
Hala S. Abuelmakarem
2
,
Joel J. P. C. Rodrigues
3
1 -
2 -
3 -
Keywords: Artificial intelligence, Genome editing, CRISPR Cas9, Guide RNA optimization, Off target prediction, Deep learning,
Abstract :
Genome‑editing technologies such as CRISPR‑Cas9 have transformed biology and medicine by enabling precise modifications of DNA sequences. Yet key challenges remain: accurate guide‑RNA (gRNA) design, minimizing off‑target effects, optimizing editing efficiency, and tailoring editors to specific cell types or organisms. Artificial intelligence (AI) offers powerful methods—machine learning, deep learning, ensemble models—to learn from large volumes of genomic, epigenomic and experimental editing‑outcome data and thereby design and optimize genome‑editing reagents. This paper reviews the development of AI‑driven genome‑edit tools, presents a hypothetical evaluation framework, and reports results from simulated datasets comparing baseline heuristics versus AI‑augmented design. In our simulation, AI models improved predicted on‑target efficiency by ~25 % and reduced predicted off‑target risk by ~30 % relative to standard rule‑based design. Tabulated results illustrate improvements in gRNA ranking, editor variant selection, and delivery‑vector prediction. We discuss methodological steps: feature engineering (sequence context, chromatin accessibility, cleavage kinetics), model architecture (CNNs, transformer models, ensemble learning), training/validation workflows and deployment considerations (interpretability, regulatory constraints, dataset bias). Limitations include biased training data, cell‑type specificity, delivery challenges, and ethical oversight. Future perspectives emphasize foundation models for editing‑protein design, active‑learning from screening experiments, personalized editing prescriptions, and AI‑augmented clinical pipelines. In conclusion, AI‑powered design and optimisation of genome‑editing tools is poised to accelerate therapeutic, agricultural and synthetic‑biology applications—provided that robust datasets, interpretability and ethical frameworks are in place.
1. Aljabali AAA, El-Tanani M, Tambuwala MM. Principles of CRISPR-Cas9 technology: Advancements in genome editing and emerging trends in drug delivery. Journal of Drug Delivery Science and Technology. 2024;92:105338. doi:10.1016/j.jddst.2024.105338
2. Athanasopoulou K, Michalopoulou V-I, Scorilas A, Adamopoulos PG. Integrating Artificial Intelligence in Next-Generation Sequencing: Advances, Challenges, and Future Directions. Current Issues in Molecular Biology. 2025; 47(6):470. https://doi.org/10.3390/cimb47060470
3. Watson, J.D.; Crick, F.H. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 1953, 18, 123–131.
4. Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561–563.
5. Collins, F.S.; Morgan, M.; Patrinos, A. The human genome project: Lessons from large-scale biology. Science 2003, 300, 286–290.
6. Green, E.D.; Watson, J.D.; Collins, F.S. Human genome project: Twenty-five years of big biology. Nature 2015, 526, 29–31.
7. Giani, A.M.; Gallo, G.R.; Gianfranceschi, L.; Formenti, G. Long walk to genomics: History and current approaches to genome sequencing and assembly. Comput. Struct. Biotechnol. J. 2020, 18, 9–19.
8. Caudai, C.; Galizia, A.; Geraci, F.; Le Pera, L.; Morea, V.; Salerno, E.; Via, A.; Colombo, T. Ai applications in functional genomics. Comput. Struct. Biotechnol. J. 2021, 19, 5762–5790.
9. Dixit, S.; Kumar, A.; Srinivasan, K.; Vincent, P.; Ramu Krishnan, N. Advancing genome editing with artificial intelligence: Opportunities, challenges, and future directions. Front. Bioeng. Biotechnol. 2023, 11, 1335901.
10. 71.Rodrigues JJPC, Sikkander ARM, Tripathi SL, Kumar K, Mishra SR, Theivanathan G. Healthcare applications of computational genomics. In: Elsevier eBooks. ; 2025:259-278. doi:10.1016/b978-0-443-30080-6.00012-2
11. 72.Rodrigues JJPC, Sikkander ARM, Tripathi SL, Kumar K, Mishra SR, Theivanathan G. Artificial intelligence’s applicability in cardiac imaging. In: Elsevier eBooks. ; 2025:181-195. doi:10.1016/b978-0-443-30080-6.00006-7
12. 73.Sikkander ARM, Tripathi SL, Theivanathan G. Extensive sequence analysis: revealing genomic knowledge throughout various domains. In: Elsevier eBooks. ; 2025:17-30. doi:10.1016/b978-0-443-30080-6.00007-9
13. Koh, E.; Sunil, R.S.; Lam, H.Y.I.; Mutwil, M. Confronting the data deluge: How artificial intelligence can be used in the study of plant stress. Comput. Struct. Biotechnol. J. 2024, 23, 3454–3466.
14. Farhud, D.D.; Zokaei, S. Ethical issues of artificial intelligence in medicine and healthcare. Iran. J. Public Health 2021, 50, i–v.
15. Elendu, C.; Amaechi, D.C.; Elendu, T.C.; Jingwa, K.A.; Okoye, O.K.; John Okah, M.; Ladele, J.A.; Farah, A.H.; Alimi, H.A. Ethical implications of ai and robotics in healthcare: A review. Medicine 2023, 102, e36671.
16. Serrano, D.R.; Luciano, F.C.; Anaya, B.J.; Ongoren, B.; Kara, A.; Molina, G.; Ramirez, B.I.; Sanchez-Guirales, S.A.; Simon, J.A.; Tomietto, G.; et al. Artificial intelligence (ai) applications in drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics 2024, 16, 1328.
17. Jamialahmadi, H.; Khalili-Tanha, G.; Nazari, E.; Rezaei-Tavirani, M. Artificial intelligence and bioinformatics: A journey from traditional techniques to smart approaches. Gastroenterol. Hepatol. Bed Bench 2024, 17, 241–252.
18. Harrer, S.; Rane, R.V.; Speight, R.E. Generative ai agents are transforming biology research: High resolution functional genome annotation for multiscale understanding of life. EBioMedicine 2024, 109, 105446.
19. Ghose, A.K.; Abdullah, S.N.A.; Md Hatta, M.A.; Megat Wahab, P.E. DNA free crispr/dcas9 based transcriptional activation system for ugt76g1 gene in stevia rebaudiana bertoni protoplasts. Plants 2022, 11, 2393.
20. Yuan, Y.; Shi, Y.; Li, C.; Kim, J.; Cai, W.; Han, Z.; Feng, D.D. Deepgene: An advanced cancer type classifier based on deep learning and somatic point mutations. BMC Bioinform. 2016, 17, 476.
21. Tegally, H.; San, J.E.; Giandhari, J.; de Oliveira, T. Unlocking the efficiency of genomics laboratories with robotic liquid-handling. BMC Genom. 2020, 21, 729.
22. Ng, N.; Gately, R.; Ooi, L. Automated liquid handling for microplate assays: A simplified user interface for the hamilton microlab star. J. Appl. Bioanal. 2020, 7, 11–18.
23. Chuai, G.; Ma, H.; Yan, J.; Chen, M.; Hong, N.; Xue, D.; Zhou, C.; Zhu, C.; Chen, K.; Duan, B.; et al. Deepcrispr: Optimized crispr guide rna design by deep learning. Genome Biol. 2018, 19, 80.
24. Niu, R.; Peng, J.; Zhang, Z.; Shang, X. R-crispr: A deep learning network to predict off-target activities with mismatch, insertion and deletion in crispr-cas9 system. Genes 2021, 12, 1878.
25. Truong, V.; Viken, K.; Geng, Z.; Barkan, S.; Johnson, B.; Ebeling, M.C.; Montezuma, S.R.; Ferrington, D.A.; Dutton, J.R. Automating human induced pluripotent stem cell culture and differentiation of ipsc-derived retinal pigment epithelium for personalized drug testing. SLAS Technol. 2021, 26, 287–299. [Google Scholar] [CrossRef]
26. Khan, S.; Møller, V.; Frandsen, R.; Mansourvar, M. Real-time ai-driven quality control for laboratory automation: A novel computer vision solution for the opentrons ot-2 liquid handling robot. Appl. Intell. 2025, 55, 524.
27. Poplin, R.; Chang, P.C.; Alexander, D.; Schwartz, S.; Colthurst, T.; Ku, A.; Newburger, D.; Dijamco, J.; Nguyen, N.; Afshar, P.T.; et al. A universal snp and small-indel variant caller using deep neural networks. Nat. Biotechnol. 2018, 36, 983–987.
28. Clement, K.; Rees, H.; Canver, M.C.; Gehrke, J.M.; Farouni, R.; Hsu, J.Y.; Cole, M.A.; Liu, D.R.; Joung, J.K.; Bauer, D.E.; et al. Crispresso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 2019, 37, 224–226.
29. Tsai, S.Q.; Zheng, Z.; Nguyen, N.T.; Liebers, M.; Topkar, V.V.; Thapar, V.; Wyvekens, N.; Khayter, C.; Iafrate, A.J.; Le, L.P.; et al. Guide-seq enables genome-wide profiling of off-target cleavage by crispr-cas nucleases. Nat. Biotechnol. 2015, 33, 187–197.
30. Bae, S.; Park, J.; Kim, J.S. Cas-offinder: A fast and versatile algorithm that searches for potential off-target sites of cas9 rna-guided endonucleases. Bioinformatics 2014, 30, 1473–1475.
31. Cancellieri, S.; Canver, M.C.; Bombieri, N.; Giugno, R.; Pinello, L. Crispritz: Rapid, high-throughput and variant-aware in silico off-target site identification for crispr genome editing. Bioinformatics 2020, 36, 2001–2008.
32. Gao, L.; Yuan, J.; Hong, K.; Ma, N.L.; Liu, S.; Wu, X. Technological advancement spurs komagataella phaffii as a next-generation platform for sustainable biomanufacturing. Biotechnol. Adv. 2025, 82, 108593.
33. Clough, E.; Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; et al. Ncbi geo: Archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res. 2024, 52, D138–D144.
34. Thakur, M.; Brooksbank, C.; Finn, R.D.; Firth, H.V.; Foreman, J.; Freeberg, M.; Gurwitz, K.T.; Harrison, M.; Hulcoop, D.; Hunt, S.E.; et al. Embl’s european bioinformatics institute (embl-ebi) in 2024. Nucleic Acids Res. 2025, 53, D10–D19.
35. Sloan, C.A.; Chan, E.T.; Davidson, J.M.; Malladi, V.S.; Strattan, J.S.; Hitz, B.C.; Gabdank, I.; Narayanan, A.K.; Ho, M.; Lee, B.T.; et al. Encode data at the encode portal. Nucleic Acids Res. 2016, 44, D726–D732
36. Tomczak, K.; Czerwinska, P.; Wiznerowicz, M. The cancer genome atlas (tcga): An immeasurable source of knowledge. Contemp. Oncol. 2015, 19, A68–A77
37. Perrin, H.; Denorme, M.; Grosjean, J.; OMICtools Community; Dynomant, E.; Henry, V.; Pichon, F.; Darmoni, S.; Desfeux, A.; Gonzalez, B. Omictools: A community-driven search engine for biological data analysis. arXiv 2017, arXiv:1707.03659.
38. Li, W.; Xu, H.; Xiao, T.; Cong, L.; Love, M.I.; Zhang, F.; Irizarry, R.A.; Liu, J.S.; Brown, M.; Liu, X.S. Mageck enables robust identification of essential genes from genome-scale crispr/cas9 knockout screens. Genome Biol. 2014, 15, 554.
39. Hassani-Pak, K.; Singh, A.; Brandizi, M.; Hearnshaw, J.; Parsons, J.D.; Amberkar, S.; Phillips, A.L.; Doonan, J.H.; Rawlings, C. Knetminer: A comprehensive approach for supporting evidence-based gene discovery and complex trait analysis across species. Plant Biotechnol. J. 2021, 19, 1670–1678.
40. Ge, S.X.; Jung, D.; Yao, R. Shinygo: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629.
41. Grentner, A.; Ragueneau, E.; Gong, C.; Prinz, A.; Gansberger, S.; Oyarzun, I.; Hermjakob, H.; Griss, J. Reactomegsa: New features to simplify public data reuse. Bioinformatics 2024, 40, btae338.
42. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523.
43. Etcheverry, M.; Moulin-Frier, C.; Oudeyer, P.Y.; Levin, M. Ai-driven automated discovery tools reveal diverse behavioral competencies of biological networks. eLife 2025, 13, RP92683.
44. Yang, B.; Xu, Y.; Maxwell, A.; Koh, W.; Gong, P.; Zhang, C. Micrat: A novel algorithm for inferring gene regulatory networks using time series gene expression data. BMC Syst. Biol. 2018, 12, 115.
45. Pop, M.; Attwood, T.K.; Blake, J.A.; Bourne, P.E.; Conesa, A.; Gaasterland, T.; Hunter, L.; Kingsford, C.; Kohlbacher, O.; Lengauer, T.; et al. Biological databases in the age of generative artificial intelligence. Bioinform. Adv. 2025, 5, vbaf044.
46. Peng, Y.; Malin, B.A.; Rousseau, J.F.; Wang, Y.; Xu, Z.; Xu, X.; Weng, C.; Bian, J. From gpt to deepseek: Significant gaps remain in realizing ai in healthcare. J. Biomed. Inform. 2025, 163, 104791.
47. Luo, R.; Sun, L.; Xia, Y.; Qin, T.; Zhang, S.; Poon, H.; Liu, T.Y. Biogpt: Generative pre-trained transformer for biomedical text generation and mining. Brief. Bioinform. 2022, 23, bbac409.
48. Peng, Y.; Chen, Q.; Shih, G. Deepseek is open-access and the next ai disrupter for radiology. Radiol. Adv. 2025, 2, umaf009.
49. Di Tommaso, P.; Chatzou, M.; Floden, E.W.; Barja, P.P.; Palumbo, E.; Notredame, C. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 2017, 35, 316–319.
50. Digby, B.; Finn, S.P.; Broin, P.Ó. Nf-core/circrna: A portable workflow for the quantification, mirna target prediction and differential expression analysis of circular rnas. BMC Bioinform. 2023, 24, 27.
51. Mpangase, P.T.; Frost, J.; Tikly, M.; Ramsay, M.; Hazelhurst, S. Nf-rnaseqcount: A nextflow pipeline for obtaining raw read counts from rna-seq data. S. Afr. Comput. J. 2021, 33, 2.
52. Liu, X.; Bienkowska, J.R.; Zhong, W. Geneteflow: A nextflow-based pipeline for analysing gene and transposable elements expression from rna-seq data. PLoS ONE 2020, 15, e0232994.
53. Hu, K.; Liu, H.; Lawson, N.D.; Zhu, L.J. Scatacpipe: A nextflow pipeline for comprehensive and reproducible analyses of single cell atac-seq data. Front. Cell Dev. Biol. 2022, 10, 981859.
54. Engelberg, A.B.; Avorn, J.; Kesselheim, A.S. A new way to contain unaffordable medication costs—Exercising the government’s existing rights. N. Engl. J. Med. 2022, 386, 1104–1106.
