Engineering of Space Exploration Robots: From Design to Operation in Hazardous Environments
Subject Areas : RoboticsMohammadAmin Alaei 1 , MohammadReza Majma 2
1 - Department of Computer Engineering, Pardis Branch, Islamic Azad University, Tehran, Iran
2 -
Keywords: Autonomous robots, Adaptive predictive control, Machine Learning, Moving target tracking, Multi-objective optimization,
Abstract :
This paper presents and evaluates a novel hybrid control framework for robots operating in dynamic environments. Addressing the challenge of maintaining reliable performance amid continuously changing target positions, moving obstacles, and dynamic uncertainties, the proposed approach combines adaptive predictive techniques with machine-learning–based components to enhance robustness and efficiency. We first develop an advanced dynamic model that captures variable inertia, nonlinear effects, and environmental disturbances. Building on this model, we implement a three-layer control architecture comprising: an adaptive trajectory-prediction module based on an extended Kalman filtering approach, a multi-objective evolutionary path-planning algorithm, and a robust adaptive controller for real-time execution. System stability is established through a Lyapunov-based theoretical analysis. Extensive experimental evaluations across diverse scenarios demonstrate that the proposed framework achieves a 30% improvement in target-tracking accuracy and a 20% reduction in energy consumption compared with conventional methods. The results indicate the approach is particularly well suited for time- and energy-constrained applications, including search-and-rescue robots, smart prosthetic systems, and space exploration rovers. Overall, the study offers a practical, theoretically grounded solution for improving robotic performance in uncertain, dynamic operational contexts.
[1] K. Thangavel et al., “Artificial Intelligence for Trusted Autonomous Satellite Operations,” Prog. Aerosp. Sci., vol. 144, p. 100960, Jan. 2024, doi: 10.1016/J.PAEROSCI.2023.100960.
[2] C. Smith, T. Mott, and T. Williams, “Robot, Take the Joystick: Understanding Space Robotics Experts’ Views on Autonomy,” 2024 33rd IEEE Int. Conf. Robot Hum. Interact. Commun., pp. 2182–2188, Aug. 2024, doi: 10.1109/RO-MAN60168.2024.10731167.
[3] M. Asli et al., “Thermal management challenges in hybrid-electric propulsion aircraft,” Prog. Aerosp. Sci., vol. 144, p. 100967, Jan. 2024, doi: 10.1016/J.PAEROSCI.2023.100967.
[4] D. M. Bushnell, “Supersonic transport optimization concepts,” Prog. Aerosp. Sci., vol. 146, p. 100993, Apr. 2024, doi: 10.1016/J.PAEROSCI.2024.100993.
[5] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” 34th Int. Conf. Mach. Learn. ICML 2017, vol. 3, pp. 1856–1868, 2017.
[6] R. Ishikawa, T. Tomita, Y. Yamada, and T. Nakamura, “Development of a peristaltic crawling robot for long-distance complex line sewer pipe inspections,” IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM, vol. 2016-September, pp. 413–418, Sep. 2016, doi: 10.1109/AIM.2016.7576802.
[7] D. Meng et al., “Vibration suppression control of free-floating space robots with flexible appendages for autonomous target capturing,” Acta Astronaut., vol. 151, pp. 904–918, Oct. 2018, doi: 10.1016/J.ACTAASTRO.2018.07.044.
[8] K. You et al., “Earthwork digital twin for teleoperation of an automated bulldozer in edge dumping,” J. F. Robot., vol. 40, no. 8, pp. 1945–1963, Dec. 2023, doi: 10.1002/ROB.22234.
[9] Q. Yuan, Y. Liu, and N. Qi, “Active vibration suppression for maneuvering spacecraft with high flexible appendages,” Acta Astronaut., vol. 139, pp. 512–520, Oct. 2017, doi: 10.1016/J.ACTAASTRO.2017.07.036.
[10] Q. Zhang, C. Li, J. Zhang, and J. Zhang, “Smooth adaptive sliding mode vibration control of a flexible parallel manipulator with multiple smart linkages in modal space,” J. Sound Vib., vol. 411, pp. 1–19, Dec. 2017, doi: 10.1016/J.JSV.2017.08.052.
[11] Q. Hu and J. Zhang, “Maneuver and vibration control of flexible manipulators using variable-speed control moment gyros,” Acta Astronaut., vol. 113, pp. 105–119, Aug. 2015, doi: 10.1016/J.ACTAASTRO.2015.03.026.
[12] K. Nagatani et al., “Emergency response to the nuclear accident at the Fukushima Daiichi Nuclear Power Plants using mobile rescue robots,” J. F. Robot., vol. 30, no. 1, pp. 44–63, Jan. 2013, doi: 10.1002/ROB.21439.
[13] H. Xiao, Z. Li, and C. Philip, “Formation control of leader-follower mobile robots’ systems using model predictive control based on neural-dynamic optimization,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5752–5762, Sep. 2016, doi: 10.1109/TIE.2016.2542788.
[14] T. P. Nascimento, C. E. T. Dórea, and L. M. G. Gonçalves, “Nonholonomic mobile robots’ trajectory tracking model predictive control: a survey,” Robotica, vol. 36, no. 5, pp. 676–696, May 2018, doi: 10.1017/S0263574717000637.
[15] “Applications of Neural Adaptive Control Technology - Jens Kalkkuhl, Rafal Zbikowski - Google Books.” https://books.google.com/books?hl=en&lr=&id=L4wwUh1BnrkC&oi=fnd&pg=PA95&dq=Khalil,+Nonlinear+Control,+2015&ots=yF0uhvN1fU&sig=5t4S2731Uf-utA0Z6ErOq4-12u0#v=onepage&q&f=false (accessed Apr. 03, 2025).
[16] J. Kalkkuhl, K. J. Hunt, and A. Dzielinski, “Applications of Neural Adaptive Control Technology,” vol. 17, Sep. 1997, doi: 10.1142/3489.
[17] A. B. Mortensen, E. T. Pedersen, L. V. Benedicto, L. Burg, M. R. Madsen, and S. Bøgh, “Teacher-Student Reinforcement Learning for Mapless Navigation using a Planetary Space Rover,” Sep. 2023, Accessed: Apr. 27, 2025. [Online]. Available: https://arxiv.org/pdf/2309.12807.
[18] S. Coloma, A. Frantz, D. van der Meer, E. Skrzypczyk, A. Orsula, and M. Olivares-Mendez, “Immersive Rover Control and Obstacle Detection based on Extended Reality and Artificial Intelligence,” Apr. 2024, Accessed: Apr. 27, 2025. [Online]. Available: https://arxiv.org/pdf/2404.14095.
[19] J. Victorio, S. Luces, A. Ravankar, T. Tanaka, and H. Malki, “A Deep Learning Approach to Lunar Rover Global Path Planning Using Environmental Constraints and the Rover Internal Resource Status,” Sensors 2024, Vol. 24, Page 844, vol. 24, no. 3, p. 844, Jan. 2024, doi: 10.3390/S24030844.
[20] A. Gao et al., “Deep reinforcement learning based planning method in state space for lunar rovers,” Eng. Appl. Artif. Intell., vol. 127, p. 107287, Jan. 2024, doi: 10.1016/J.ENGAPPAI.2023.107287.
[21] S. S. Shanbhag, Nidhi, S. Sharma, K. Damurothu, and R. Sandeep, “Design of Mini-Hexapod Rover System for Future Lunar Exploration,” SAE Tech. Pap., Jun. 2024, doi: 10.4271/2024-26-0456.
