Comparative Analysis of Solar Rights from Neighborhood to Building Scale (Case Study: Yousefabad, Tehran)
Subject Areas : Urban Design
Niloufar Mosalmanfarkoosh
1
,
Hadi Pendar
2
,
Pantea Alipour Kouhi
3
,
Niusha Mosalmanfarkoosh
4
1 - Iran University of Art
2 - استادیار گروه طراحی شهری، دانشکده معماری و شهرسازی، اصفهان، ایران
3 - Department of Urban Development, SR.C., Islamic Azad University, Tehran, Iran
4 - Department of Interior Architecture, Faculty of Islamic-Iranian Arts, Farshchian Branch, Islamic Azad University, Tehran, Iran
Keywords: Solar Access, Right-to-Light, Urban Morphology, Sky View Factor (SVF), Genetic Algorithm, BIPV, UBEM,
Abstract :
Rapid urbanization has accelerated recently, bringing environmental and equity challenges, particularly in solar and daylight access. In Yousefabad (District 6, Tehran), rapid densification under current height codes threatens residents' daylight access. Accordingly, this study addresses these challenges by evaluating solar access and developing morphology-based height regulations that safeguard residents' right to sunlight, focusing on efficiency, equity, and the trade-offs between them in solar performance. This study adopts an applied, quantitative approach to evaluate solar radiation (SR), sunlight duration (S_H), and sky view factor (SVF) across three spatial scales—macro (neighborhood), meso (urban block), and micro (building) —to derive an optimized height. The workflow combines GIS-based analysis, parametric modeling in Rhinoceros, and environmental simulations in Ladybug and Honeybee, while a genetic algorithm optimizes design scenarios and Gini coefficients (G_SR, G_SH, G_SVF) quantify equity in solar access. Results indicate that current height codes restrict daylight and solar access compared to the optimized scenario. Based on the equity indicator and Gini coefficients, the optimized scenario reduced G_SR, G_SH, and G_SVF by roughly 16%, 20%, and 11%, while increasing mean SR, sunlight hours, and SVF by about 15–20%. These outcomes defined block-specific height bands and guidelines to help planners and policymakers enhance solar equity in dense areas. The main innovation lies in a unified analytical–optimization framework linking neighborhood, block, and building-scale evaluations. The proposed framework links urban form to solar equity, demonstrating that balanced height and density improve solar access in dense cities.
1. Amado, M. P., Poggi, F., & Amado, A. R. (2016). Energy-efficient city: A model for urban planning. Sustainable Cities and Society, 26, 476–485. https://doi.org/10.1016/j.scs.2016.04.011
2. Bentley, I., Alcock, A., Murrain, P., McGlynn, S., & Smith, G. (1985). Responsive environments: A manual for designers. Architectural Press.
3. Cheng, V., Steemers, K., Montavon, M., & Compagnon, R. (2006, 1 September). Urban form, density, and solar potential. In Proceedings of the 23rd Conference on Passive and Low Energy Architecture (PLEA 2006) (Vol. 6). Geneva, Switzerland: EPFL. Retrieved from https://infoscience.epfl.ch/record/84787/files/PLEA2006_UrbanFormDensityAndSolarPotential.pdf
4. De Luca, F., Dogan, T., & Sepúlveda, A. (2021). Reverse solar envelope method: A new building form-finding method that can take regulatory frameworks into account. Automation in Construction, 123, 103518. https://doi.org/10.1016/j.autcon.2020.103518
5. Doherty, M., Nakanishi, H., Bai, X., & Myers, J. (2009, October 16–18). Relationships between form, morphology, density, and energy in urban environments. In Proceedings of the International Conference on Human Ecology (pp. 1–28). The Society for Human Ecology.
6. Elaouzy, Y. (2025). Enhancing urban planning for sustainable and solar-optimized neighborhoods: A case study from Morocco. Solar Energy, 244, 113732. https://doi.org/10.1016/j.solener.2025.113732
7. Ferrando, M., Causone, F., Hong, T., & Chen, Y. (2020). Urban building energy modeling (UBEM) tools: A state-of-the-art review of bottom-up physics-based approaches. Sustainable Cities and Society, 62, 102408. https://doi.org/10.1016/j.scs.2020.102408
8. Freitas, S., Catita, C., Redweik, P., & Brito, M. C. (2015). Modelling solar potential in the urban environment: State-of-the-art review. Renewable and Sustainable Energy Reviews, 41, 915–931. https://doi.org/10.1016/j.rser.2014.08.060
9. Geng, X., Xie, D., & Gou, Z. (2024). Optimizing urban block morphologies for net-zero energy cities: Exploring photovoltaic potential and urban design prototypes. Building Simulation, 17(4), 607–624. https://doi.org/10.1007/s12273-024-1104-y
10. Kanters, J., & Horvat, M. (2012). Solar energy as a design parameter in urban planning. Energy Procedia, 30, 1143–1152. https://doi.org/10.1016/j.egypro.2012.11.127
11. Liu, K., Xu, X., Zhang, R., Kong, L., Wang, W., & Deng, W. (2023). Impact of urban form on building energy consumption and solar energy potential: A case study of residential blocks in Jianhu, China. Energy and Buildings, 280, 112727. https://doi.org/10.1016/j.enbuild.2022.112727
12. Lobaccaro, G., Frontini, F., Masera, G., & Poli, T. (2012). SolarPW: A new solar design tool to exploit solar potential in existing urban areas. Energy Procedia, 30, 1173–1183. https://doi.org/10.1016/j.egypro.2012.11.130
13. Lobaccaro, G., Lisowska, M. M., Saretta, E., Bonomo, P., & Frontini, F. (2019). A methodological analysis approach to assess solar energy potential at the neighborhood scale. Energies, 12(18), 3554. https://doi.org/10.3390/en12183554
14. Mirzabeigi, S., & Razkenari, M. (2022). Design optimization of urban typologies: A framework for evaluating building energy performance and outdoor thermal comfort. Sustainable Cities and Society, 76, 103515. https://doi.org/10.1016/j.scs.2021.103515
15. Moonen, P., Defraeye, T., Dorer, V., Blocken, B., & Carmeliet, J. (2012). Urban physics: Effect of the microclimate on comfort, health, and energy demand. Frontiers of Architectural Research, 1(3), 197–228. https://doi.org/10.1016/j.foar.2012.05.002
16. Morganti, M., Salvati, A., Roura, H. C., & Cecere, C. (2017). Urban morphology indicators for solar energy analysis. Energy Procedia, 134, 807–814. https://doi.org/10.1016/j.egypro.2017.09.533
17. Mosalmanfarkoosh, N. (2025). Urban Design Guideline Related to Physical Density Focusing on Solar Right of Residents – Case Study: Yousefabad Neighborhood, Tehran [Zenodo]. https://doi.org/10.5281/zenodo.17328781
18. Oh, M., Jang, K. M., & Kim, Y. C. (2021). Empirical analysis of building energy consumption and urban form in a large city: A case of Seoul, South Korea. Energy and Buildings, 245, 111046. https://doi.org/10.1016/j.enbuild.2021.111046
19. Okeil, A. (2010). A holistic approach to energy-efficient building forms. Energy and Buildings, 42(9), 1437–1444. https://doi.org/10.1016/j.enbuild.2010.03.013
20. Pakzad, E., & Salari, N. (2018). Measuring sustainability of urban blocks: The case of Dowlatabad, Kermanshah city. Cities, 75, 90–100. https://doi.org/10.1016/j.cities.2018.01.005
21. Poggi, F., & Amado, M. P. (2024). The spatial dimension of energy consumption in cities. Energy Policy, 187, 114023. https://doi.org/10.1016/j.enpol.2024.114023
22. Ratti, C., Baker, N., & Steemers, K. (2005). Energy consumption and urban texture. Energy and Buildings, 37(7), 762–776. https://doi.org/10.1016/j.enbuild.2004.10.010
23. Ratti, C., Raydan, D., & Steemers, K. (2003). Building form and environmental performance: Archetypes, analysis, and an arid climate. Energy and Buildings, 35(1), 49–59. https://doi.org/10.1016/S0378-7788(02)00079-8
24. Rostami, E., Nasrollahi, N., & Khodakarami, J. (2024). A comprehensive study of how urban morphological parameters impact the solar potential, energy consumption, and daylight autonomy in canyons and buildings. Energy and Buildings, 305, 113904. https://doi.org/10.1016/j.enbuild.2024.113904
25. Sarralde, J. J., Quinn, D. J., Wiesmann, D., & Steemers, K. (2015). Solar energy and urban morphology: Scenarios for increasing the renewable energy potential of neighborhoods in London. Renewable Energy, 73, 10–17. https://doi.org/10.1016/j.renene.2014.06.028
26. Shi, Z., Fonseca, J. A., & Schlueter, A. (2017). A review of simulation-based urban form generation and optimization for energy-driven urban design. Building and Environment, 121, 119–129. https://doi.org/10.1016/j.buildenv.2017.05.006
27. Shi, Z., Fonseca, J. A., & Schlueter, A. (2021). A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design. Renewable Energy, 165, 823–841. https://doi.org/10.1016/j.renene.2020.10.067
28. Stasinopoulos, T. N. (2018). A survey of solar envelope properties using solid modelling. Journal of Green Building, 13(1), 3–30. https://doi.org/10.3992/1943-4618.13.1.3
29. Tao, Y., Yan, Z., Ni, P., He, B.-J., Qin, G., Yue, Y., Lei, F., Zheng, Z., & Zhang, X. (2025). Capturing available solar energy on urban-scale building surface: A multi-dimensional perspective. Energy and Buildings, 344, 115989. https://doi.org/10.1016/j.enbuild.2025.115989
30. Thellufsen, J. Z., Lund, H., Sorknæs, P., Østergaard, P. A., Chang, M., Drysdale, D., Nielsen, S., Djørup, S. R., & Sperling, K. (2020). Smart energy cities in a 100% renewable energy context. Renewable and Sustainable Energy Reviews, 129, 109922. https://doi.org/10.1016/j.rser.2020.109922
31. Tuhus-Dubrow, D., & Krarti, M. (2010). Genetic-algorithm-based approach to optimize building envelope design for residential buildings. Building and Environment, 45(7), 1574–1581. https://doi.org/10.1016/j.buildenv.2010.01.005
32. Vartholomaios, A. (2015). The residential solar block envelope: A method for enabling the development of compact urban blocks with high passive solar potential. Energy and Buildings, 99, 303–312. https://doi.org/10.1016/j.enbuild.2015.04.046
33. Vermeulen, T., Merino, L., Knopf-Lenoir, C., Villon, P., & Beckers, B. (2018). Periodic urban models for optimization of passive solar irradiation. Solar Energy, 162, 67–77. https://doi.org/10.1016/j.solener.2018.01.014
34. Wang, M., Dong, Y., Liao, W., Pan, B., & Li, S. (2025). Impact of residential morphology on outdoor thermal comfort and building energy consumption in winter and summer: A case study. Urban Climate, 61, 102479. https://doi.org/10.1016/j.uclim.2025.102479
35. Wang, X., Ma, Q., & Duan, Z. (2024). Spatiotemporal effect and influencing factors of total factor energy efficiency: Evidence from urban agglomerations in China. Ecological Indicators, 161, 111984. https://doi.org/10.1016/j.ecolind.2024.111984
36. York, R., & Bell, S. E. (2019). Energy transitions or additions? Energy Research & Social Science, 51, 40–43. https://doi.org/10.1016/j.erss.2019.01.008
37. Zhao, H., Yang, R. J., Liu, C., & Sun, Q. (2023). Solar building envelope potential in urban environments: A state-of-the-art review of assessment methods and framework. Building and Environment, 244, 110831. https://doi.org/10.1016/j.buildenv.2023.110831
