An Introduction to Solar Energy, Solar Radiation, and their Measurement Methods: A Review Study
Subject Areas : Journal of Building Information Modeling
Mohammad Hosein HoushmandRad
1
,
Mahsa Mokhtari
2
1 -
2 -
Keywords: Solar energy, Global Solar Radiation, Artificial Neural Network (ANN), Adaptive Neuro – Fuzzy Inference System.,
Abstract :
The amount of solar radiation is one of the important climatic parameters that has a direct and close relationship with many hydrological and meteorological processes. This parameter is a fundamental element for designing and developing various solar energy systems and conducting applied solar energy research. To estimate the amount of solar radiation, researchers have proposed various models that eliminate the need for expensive equipment in meteorological stations. When measured data is not available, meteorological parameters such as maximum and minimum temperatures, wind speed, sunshine hours, rainfall, air pressure, and humidity can be used at different meteorological stations. In this review article, a series of research conducted in this field will be discussed.
Abbassi, K., Sadeghi, M., Saffaripour, M., & Jafari, M. (2023). Feasibility study of femur bone with continuum model. Journal of Medical Engineering & Technology, 47(7), 355–366.
AbdulAzeez, M. (2011). Artificial neural network estimation of global solar radiation using meteorological parameters in Gusau, Nigeria. Archives of Applied Science Research, 3(2), 586–595.
Alfa, B., Ojosu, J., & Komolafe, L. (2001). Prediction of hourly solar radiation using neural network. Nigeria Journal of Renewable Energy, 9(1–2), 42–46.
Almorox, J. (2011). Estimating global solar radiation from common meteorological data in Aranjuez, Spain. Turkish Journal of Physics, 35(1), 53–64.
Almorox, J., & Hontoria, C. (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9–10), 1529–1535.
Angstrom, A. (1924). Solar and terrestrial radiation: Report to the International Commission for Solar Research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society, 50(210), 121–126.
Bagheri, H., Moradi, M. H., & Bagheri, S. (2013). New technique for global solar radiation prediction. Iranian Journal of Energy, 16(2), 1–10.
Bahel, V., Bakhsh, H., & Srinivasan, R. (1987). A correlation for estimation of global solar radiation. Energy, 12(2), 131–135.
Ball, R. A., Purcell, L. C., & Carey, S. K. (2004). Evaluation of solar radiation prediction models in North America. Agronomy Journal, 96(2), 391–397.
Basurto, N., López, F., & Ramos, J. (2019). A hybrid intelligent system to forecast solar energy production. Computers & Electrical Engineering, 78, 373–387.
Besharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews, 21, 798–821.
Bristow, K. L., & Campbell, G. S. (1984). On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology, 31(2), 159–166.
Bud yko, M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus, 21(5), 611–619.
Burari, F., Sambo, A., & Mshelia, E. (2001). Estimation of global solar radiation in Bauchi. Nigerian Journal of Renewable Energy, 9, 34–36.
Caudill, M. (1987). Neural networks primer, part I. AI Expert, 2(12), 46–52.
Chandel, S., Aggarwal, R., & Pandey, A. (2005). New correlation to estimate global solar radiation on horizontal surfaces using sunshine hour and temperature data for Indian sites. Journal of Solar Energy Engineering, 127(3), 417–420.
Chen, R., Kang, E., Lu, S., & Han, J. (2004). Validation of five global radiation models with measured daily data in China. Energy Conversion and Management, 45(11–12), 1759–1769.
Durrant, P. J. (2001). winGamma: A non-linear data analysis and modelling tool with applications to flood prediction (Doctoral dissertation). Cardiff University, Wales, UK.
Fadare, D. (2009). Modelling of solar energy potential in Nigeria using an artificial neural network model. Applied Energy, 86(9), 1410–1422.
Garg, H. P., & Garg, S. N. (1983). Prediction of global solar radiation from bright sunshine hours and other meteorological data. Energy Conversion and Management, 23(2), 113–118.
Habibi, M., et al. (2022). Drug delivery with therapeutic lens for the glaucoma treatment in the anterior eye chamber: A numerical simulation. Biomedical Engineering Advances, 3, 100032.
Hargreaves, G. L., Hargreaves, G. H., & Riley, J. P. (1985). Irrigation water requirements for Senegal River basin. Journal of Irrigation and Drainage Engineering, 111(3), 265–275.
HoushmandRad, M. H., & Mokhtari, M. (2022). Investigating possible solutions to reduce noise pollution in wind turbines. 7th International Conference on Civil Engineering, Architecture, Urban Planning with Sustainable Development Approach, Iran.
Huang, L., et al. (2021). Solar radiation prediction using different machine learning algorithms and implications for extreme climate events. Frontiers in Earth Science, 9, 596860.
Islam, M., et al. (2009). Measurement of solar energy radiation in Abu Dhabi, UAE. Applied Energy, 86(4), 511–515.
Jiya, J., & Alfa, B. (2002). Parameterization of solar radiation using neural network. Proceedings of the Nigerian Renewable Energy Conference, Nigeria.
Kalogirou, S. A., Neocleous, C. C., & Schizas, C. N. (1998). Artificial neural networks for modelling the starting-up of a solar steam-generator. Applied Energy, 60(2), 89–100.
Koncar, N. (1997). Optimisation methodologies for direct inverse neurocontrol (Doctoral dissertation). University of London.
Lazzús, J. A., Pérez Ponce, A. A., & Marín, J. (2011). Estimation of global solar radiation over the city of La Serena (Chile) using a neural network. Applied Solar Energy, 47(1), 66–73.
Mellit, A., Benghanem, M., & Kalogirou, S. A. (2006). An adaptive wavelet-network model for forecasting daily total solar-radiation. Applied Energy, 83(7), 705–722.
Mobasseri, S., & Janghorban, M. (2024). Non-homogeneous model for studying femur bone implants with considering defects. International Journal of Modelling and Simulation, 1–11.
Moghaddamnia, A., et al. (2009). Comparison of LLR, MLP, Elman, NNARX and ANFIS models—with a case study in solar radiation estimation. Journal of Atmospheric and Solar-Terrestrial Physics, 71(8–9), 975–982.
Noorian, A. M., Moradi, I., & Kamali, G. A. (2008). Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces. Renewable Energy, 33(6), 1406–1412.
Ögelman, H., Ecevit, A., & Tasdemiroğlu, E. (1984). A new method for estimating solar radiation from bright sunshine data. Solar Energy, 33(6), 619–625.
Ojosu, J. O., & Komolafe, L. K. (1987). Models for estimating solar radiation availability in South Western Nigeria. Nigerian Journal of Solar Energy, 16, 69–77.
Page, J. K. (1979). Methods for the estimation of solar energy on vertical and inclined surfaces. In Solar Energy Conversion (pp. 37–99). Elsevier.
Prescott, J. (1940). Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 46, 114–118.
Rehman, S., & Mohandes, M. (2009). Estimation of diffuse fraction of global solar radiation using artificial neural networks. Energy Sources, Part A, 31(11), 974–984.
Sabziparvar, A. A. (2007). General formula for estimation of monthly mean global solar radiation in different climates on the south and north coasts of Iran. International Journal of Photoenergy, 2007(1), 094786.
Sabziparvar, A. A. (2008). A simple formula for estimating global solar radiation in central arid deserts of Iran. Renewable Energy, 33(5), 1002–1010.
Sabziparvar, A., & Bayat Varkeshi, M. (2019). Evaluation of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) methods in prediction of global solar radiation. Iranian Journal of Physics Research, 10(4), 347–357.
Samimi, J. (1994). Estimation of height-dependent solar irradiation and application to the solar climate of Iran. Solar Energy, 52(5), 401–409.
Samuel, T. D. M. A. (1991). Estimation of global radiation for Sri Lanka. Solar Energy, 47(5), 333–337.
Seyedian, S., et al. (2017). Solar radiation prediction using meteorological parameters. Iran-Water Resources Research, 13(1), 88–100.
Sivamadhavi, V., & Selvaraj, R. S. (2012). Robust regression technique to estimate the global radiation. Indian Journal of Radio & Space Physics, 41(1), 17–25.
Trabea, A. A., & Shaltout, M. A. (2000). Correlation of global solar radiation with meteorological parameters over Egypt. Renewable Energy, 21(2), 297–308.
Wang, J., et al. (2011). Daily solar radiation prediction based on genetic algorithm optimization of wavelet neural network. 2011 International Conference on Electrical and Control Engineering. IEEE.
Yao, W., et al. (2014). Evaluation of global solar radiation models for Shanghai, China. Energy Conversion and Management, 84, 597–612.
Yazdanpanah, H., Mirmojarabian, R., & Barghi, H. (2010). Estimation of solar global radiation on horizontal surface in Isfahan. Journal of Geography and Environmental Planning, 37, 95–104.
Yin, Y., et al. (2008). Radiation calibration of FAO56 Penman–Monteith model to estimate reference crop evapotranspiration in China. Agricultural Water Management, 95(1), 77–84.
Zabara, K. (1986). Estimation of the global solar radiation in Greece. Solar & Wind Technology, 3(4), 267–272