Brief review of the effects of exercise training on MyomiRs
Subject Areas : Cellular & Molecular Exercise Biology and Sports GeneticArdeshir Zafari 1 , Rahim Amini 2 , Sanaz Mahmazi 3
1 - Department of Sport Sciences, Za.C., Islamic Azad university, Zanjan, Iran.
2 - Department of Biology, Za.C., Islamic Azad university, Zanjan, Iran
3 - Department of Biology, Za.C., Islamic Azad university, Zanjan, Iran.
Keywords: Exercise Training, Gene Expression, Muscle Adaptation, MyomiRs, MiRNAs,
Abstract :
Exercise training and physical activity induce physiological responses and adaptations in skeletal muscle that are beneficial for maintaining health, preventing and treating chronic muscle diseases. These responses and adaptations are mainly caused by transcriptional responses that are stimulated in response to any type of exercise, whether resistance or endurance. Changes in key metabolic, regulatory, and myogenic genes in skeletal muscle occur as an early and/or late response to exercise, and these epigenetic changes, which are influenced by environmental and genetic factors, cause changes in transcriptional responses. Gene transcription can occur in response to various environmental factors through changes in DNA methylation patterns, histone modifications, changes in the DNA packaging structure in chromosomes, and changes in the levels of factors controlling gene transcription, which have been described as epigenetic changes. In addition to being the main elements of the locomotor system, muscles can also control various physiological processes as an endocrine system by expressing various genes and secreting various factors called myokines. Gene expression is controlled by different factors at the transcriptional and post-transcriptional levels. Among the factors controlling post-transcriptional gene expression are miRNAs, which can regulate gene expression under the influence of the environment. MyomiRs are essentially miRNAs expressed in muscle tissue that change their expression levels in response to exercise and can affect the function of various genes through different pathways by affecting the muscle tissue transcriptome. The effect of physical activity and exercise training on these epigenetic changes and how systemic metabolism or its metabolites affect epigenetic changes in skeletal muscle have been studied in previous studies. In this article, the role and function of MyomiRs under the influence of exercise training are reviewed.
[1] Alibegovic, A.C., Sonne, M.P., Hojbjerre, L., Bork-Jensen, J., Jacobsen, S., Nilsson, E., Faerch, K., Hiscock, N., Mortensen, B., Friedrichsen, M., et al. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am. J. Physiol. Endocrinol. Metab. 2010;299: E752–E763. doi: 10.1152/ajpendo.00590.2009. [DOI] [PubMed] [Google Scholar]
[2] Awad, S., Kunhi, M., Little, G.H., Bai, Y., An, W., Bers, D., Kedes, L., Poizat, C. Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acids Res. 2013; 41:7656–7672. doi: 10.1093/nar/gkt500. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
[3] Bagley, J.R., Burghardt, K.J., McManus, R., Howlett, B., Costa, P.B., Coburn, J.W., Arevalo, J.A., Malek, M.H., Galpin, A.J. Epigenetic Responses to Acute Resistance Exercise in Trained vs. Sedentary Men. J. Strength Cond. Res. 2020; 34:1574–1580. doi: 10.1519/JSC.0000000000003185. [DOI] [PubMed] [Google Scholar]
[4] Bajpeyi, S., Covington, J.D., Taylor, E.M., Stewart, L.K., Galgani, J.E., Henagan, T.M. Skeletal Muscle PGC1alpha −1 Nucleosome Position and −260 nt DNA Methylation Determine Exercise Response and Prevent Ectopic Lipid Accumulation in Men. Endocrinology. 2017; 158:2190–2199. doi: 10.1210/en.2017-00051. [DOI] [PubMed] [Google Scholar]
[5] Bannister, A.J., Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011; 21:381–395. doi: 10.1038/cr.2011.22. [DOI] [PubMed] [Google Scholar]
[6] Barres, R., Yan, J., Egan, B., Treebak, J.T., Rasmussen, M., Fritz, T., Caidahl, K., Krook, A., O’Gorman, D.J., Zierath, J.R. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012; 15:405–411. doi: 10.1016/j.cmet.2012.01.001. [DOI] [PubMed] [Google Scholar]
[7] Chriett, S., Dabek, A., Wojtala, M., Vidal, H., Balcerczyk, A., Pirola, L. Prominent action of butyrate over beta-hydroxybutyrate as histone deacetylase inhibitor, transcriptional modulator and anti-inflammatory molecule. Sci. Rep. 2019; 9:742. doi: 10.1038/s41598-018-36941-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
[8] Das, S., Morvan, F., Morozzi, G., Jourde, B., Minetti, G.C., Kahle, P., Rivet, H., Brebbia, P., Toussaint, G., Glass, D.J., et al. ATP Citrate Lyase Regulates Myofiber Differentiation and Increases Regeneration by Altering Histone Acetylation. Cell Rep. 2017; 21:3003–3011.
doi: 10.1016/j.celrep.2017.11.038. [DOI] [PubMed] [Google Scholar]
[9] Davidsen, P.K., Gallagher, I.J., Hartman, J.W., Tarnopolsky, M.A., Dela, F., Helge, J.W., Timmons, J.A., Phillips, S.M. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J. Appl. Physiol. 2011; 110:309–317. doi: 10.1152/japplphysiol.00901.2010. [DOI] [PubMed] [Google Scholar]
[10] Delezie, J., Handschin, C. Endocrine Crosstalk Between Skeletal Muscle and the Brain. Front. Neurol. 2018; 9:698. doi: 10.3389/fneur.2018.00698. [DOI] [PubMed] [Google Scholar]
[11] Diao, L.T., Xie, S.J., Lei, H., Qiu, X.S., Huang, M.C., Tao, S., Hou, Y.R., Hu, Y.X., Sun, Y.J., Zhang, Q., et al. METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels. Biochem. Biophys. Res. Commun. 2021; 552:52–58. doi: 10.1016/j.bbrc.2021.03.035. [DOI] [PubMed] [Google Scholar]
[12] Eftekhari, E., Zafari, A., Gholami, M. Physical activity, lipid profiles and leptin. J Sports Med Phys Fitness. 2016 Apr;56(4):465-9. Epub 2015 Mar 13. PMID: 25766051. [PubMed] [Google Scholar]
[13] Feng, J., Chang, H., Li, E., Fan, G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J. Neurosci. Res. 2005; 79:734–746. doi: 10.1002/jnr.20404. [DOI] [PubMed] [Google Scholar]
[14] Figueiredo, V.C., Wen, Y., Alkner, B., Fernandez-Gonzalo, R., Norrbom, J., Vechetti, I.J., Jr., Valentino, T., Mobley, C.B., Zentner, G.E., Peterson, C.A., et al. Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise. J. Physiol. 2021; 599:3363–3384. doi: 10.1113/JP281244. [DOI] [PubMed] [Google Scholar]
[15] Fischer, C.P. Interleukin-6 in acute exercise and training: What is the biological relevance? Exerc. Immunol. Rev. 2006; 12:6–33. [PubMed] [Google Scholar]
[16] Fyfe, J.J., Bishop, D.J., Zacharewicz, E., Russell, A.P., Stepto, N.K. Concurrent exercise incorporating high-intensity interval or continuous training modulates mTORC1 signaling and microRNA expression in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016;310: R1297–R1311. doi: 10.1152/ajpregu.00479.2015. [DOI] [PubMed] [Google Scholar]
[17] Gao, Z., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., Lefevre, M., Cefalu, W.T., Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009; 58:1509–1517. doi: 10.2337/db08-1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
[18] Gibb, A.A., Epstein, P.N., Uchida, S., Zheng, Y., McNally, L.A., Obal, D., Katragadda, K., Trainor, P., Conklin, D.J., Brittian, K.R., et al. Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth. Circulation. 2017; 136:2144–2157. doi: 10.1161/CIRCULATIONAHA.117.028274. [DOI] [PMC free article] [PubMed] [Google Scholar]
[19] Hervouet, E., Peixoto, P., Delage-Mourroux, R., Boyer-Guittaut, M., Cartron, P.F. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin. Epigenetics. 2018;10:17. doi: 10.1186/s13148-018-0450-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
[20] Hoffman, N.J., Parker, B.L., Chaudhuri, R., Fisher-Wellman, K.H., Kleinert, M., Humphrey, S.J., Yang, P., Holliday, M., Trefely, S., Fazakerley, D.J., et al. Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metab. 2015; 22:922–935. doi: 10.1016/j.cmet.2015.09.001. [DOI] [PubMed] [Google Scholar]
[21] Horak, M., Novak, J., Bienertova-Vasku, J. Muscle-specific microRNAs in skeletal muscle development. Dev. Biol. 2016; 410:1–13. doi: 10.1016/j.ydbio.2015.12.013. [DOI] [PubMed] [Google Scholar]
[22] Hughes, D.C., Ellefsen, S., Baar, K. Adaptations to Endurance and Strength Training. Cold Spring Harb. Perspect. Med. 2018; 8:a029769. doi: 10.1101/cshperspect. a029769. [DOI] [PMC free article] [PubMed] [Google Scholar]
[23] Izzo, L.T., Wellen, K.E. Histone lactylation links metabolism and gene regulation. Nature. 2019; 574:492–493. doi: 10.1038/d41586-019-03122-1. [DOI] [PubMed] [Google Scholar]
[24] Jacques, M., Hiam, D., Craig, J., Barres, R., Eynon, N., Voisin, S. Epigenetic changes in healthy human skeletal muscle following exercise—A systematic review. Epigenetics. 2019; 14:633–648. doi: 10.1080/15592294.2019.1614416. [DOI] [PMC free article] [PubMed] [Google Scholar]
[25] Karnib, N., El-Ghandour, R., El Hayek, L., Nasrallah, P., Khalifeh, M., Barmo, N., Jabre, V., Ibrahim, P., Bilen, M., Stephan, J.S., et al. Lactate is an antidepressant that mediates resilience to stress by modulating the hippocampal levels and activity of histone deacetylases. Neuropsychopharmacology. 2019; 44:1152–1162. doi: 10.1038/s41386-019-0313-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
[26] Keller, P., Vollaard, N.B., Gustafsson, T., Gallagher, I.J., Sundberg, C.J., Rankinen, T., Britton, S.L., Bouchard, C., Koch, L.G., Timmons, J.A. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J. Appl. Physiol. 2011; 110:46–59. doi: 10.1152/japplphysiol.00634.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
[27] Kietzmann, T., Petry, A., Shvetsova, A., Gerhold, J.M., Gorlach, A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br. J. Pharmacol. 2017; 174:1533–1554. doi: 10.1111/bph.13792. [DOI] [PMC free article] [PubMed] [Google Scholar]
[28] Krzysztofik, M., Wilk, M., Wojdala, G., Golas, A. Maximizing Muscle Hypertrophy: A Systematic Review of Advanced Resistance Training Techniques and Methods. Int. J. Environ. Res. Public Health. 2019; 16:4897. doi: 10.3390/ijerph16244897. [DOI] [PubMed] [Google Scholar]
[29] Laker, R.C., Lillard, T.S., Okutsu, M., Zhang, M., Hoehn, K.L., Connelly, J.J., Yan, Z. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1alpha gene and age-dependent metabolic dysfunction in the offspring. Diabetes. 2014; 63:1605–1611. doi: 10.2337/db13-1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
[30] Lane, S.C., Camera, D.M., Lassiter, D.G., Areta, J.L., Bird, S.R., Yeo, W.K., Jeacocke, N.A., Krook, A., Zierath, J.R., Burke, L.M., et al. Effects of sleeping with reduced carbohydrate availability on acute training responses. J. Appl. Physiol. 2015; 119:643–655. doi: 10.1152/japplphysiol.00857.2014. [DOI] [PubMed] [Google Scholar]
[31] Li, J., Pei, Y., Zhou, R., Tang, Z., Yang, Y. Regulation of RNA N(6)-methyladenosine modification and its emerging roles in skeletal muscle development. Int. J. Biol. Sci. 2021; 17:1682–1692. doi: 10.7150/ijbs.56251. [DOI] [PMC free article] [PubMed] [Google Scholar]
[32] Liberti, M.V., Locasale, J.W. Histone Lactylation: A New Role for Glucose Metabolism. Trends Biochem. Sci. 2020; 45:179–182. doi: 10.1016/j.tibs.2019.12.004. [DOI] [PubMed] [Google Scholar]
[33] Lim, C., Shimizu, J., Kawano, F., Kim, H.J., Kim, C.K. Adaptive responses of histone modifications to resistance exercise in human skeletal muscle. PLoS ONE. 2020;15: e0231321. doi: 10.1371/journal.pone.0231321. [DOI] [PMC free article] [PubMed] [Google Scholar]
[34] Lindholm, M.E., Marabita, F., Gomez-Cabrero, D., Rundqvist, H., Ekstrom, T.J., Tegner, J., Sundberg, C.J. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics. 2014; 9:1557–1569. doi: 10.4161/15592294.2014.982445. [DOI] [PMC free article] [PubMed] [Google Scholar]
[35] Longo, N., Frigeni, M., Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta. 2016; 1863:2422–2435. doi: 10.1016/j.bbamcr.2016.01.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
[36] Maasar, M.F., Turner, D.C., Gorski, P.P., Seaborne, R.A., Strauss, J.A., Shepherd, S.O., Cocks, M., Pillon, N.J., Zierath, J.R., Hulton, A.T., et al. The Comparative Methylome and Transcriptome after Change of Direction Compared to Straight Line Running Exercise in Human Skeletal Muscle. Front. Physiol. 2021; 12:619447. doi: 10.3389/fphys.2021.619447. [DOI] [PubMed] [Google Scholar]
[37] Margolis, L.M., McClung, H.L., Murphy, N.E., Carrigan, C.T., Pasiakos, S.M. Skeletal Muscle myomiR Are Differentially Expressed by Endurance Exercise Mode and Combined Essential Amino Acid and Carbohydrate Supplementation. Front. Physiol. 2017; 8:182. doi: 10.3389/fphys.2017.00182. [DOI] [PMC free article] [PubMed] [Google Scholar]
[38] Marosi, K., Kim, S.W., Moehl, K., Scheibye-Knudsen, M., Cheng, A., Cutler, R., Camandola, S., Mattson, M.P. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J. Neurochem. 2016; 139:769–781. doi: 10.1111/jnc.13868. [DOI] [PMC free article] [PubMed] [Google Scholar]
[39] McGee, S.L., Fairlie, E., Garnham, A.P., Hargreaves, M. Exercise-induced histone modifications in human skeletal muscle. J. Physiol. 2009; 587:5951–5958. doi: 10.1113/jphysiol.2009.181065. [DOI] [PMC free article] [PubMed] [Google Scholar]
[40] McGee, S.L., Hargreaves, M. Epigenetics and Exercise. Trends Endocrinol. Metab. 2019; 30:636–645. doi: 10.1016/j.tem.2019.06.002. [DOI] [PubMed] [Google Scholar]
[41] McGee, S.L., Hargreaves, M. Exercise adaptations: Molecular mechanisms and potential targets for therapeutic benefit. Nat. Rev. Endocrinol. 2020; 16:495–505. doi: 10.1038/s41574-020-0377-1. [DOI] [PubMed] [Google Scholar]
[42] Mokhtari, H., Zafari, A., Nemati, N. The Effect of a Period of Resistance-Interval Training Versus Resistance-Aerobic Training on Insulin-Like Growth Factor-1 and Strength and Muscle Mass in Trained Young Men. Jundishapur Scientific Medical Journal. 2024; 23[5]:412-424. 10.32592/jsmj.23.5.412 [Persian]. [DOI] [Google Scholar]
[43] Mooren, F.C., Viereck, J., Kruger, K., Thum, T. Circulating microRNAs as potential biomarkers of aerobic exercise capacity. Am J. Physiol. Heart Circ. Physiol. 2014;306:H557–H563. doi: 10.1152/ajpheart.00711.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
[44] Mottahedy, M., Bagherpour, T., Zafari, A., Nemati, N. Effect of a Single Session of Intense Resistance Exercise with Glutamine Supplementation on the Relative Expression of Alpha and IIX Isoforms of Fast-Twitch Myosin Heavy Chain Gene in Male Rats. J Gorgan Univ Med Sci 2024; 26 (2) :12-21 [Persian]. URL: http://goums.ac.ir/journal/article-1-4377-fa.html. [DOI] [Google Scholar]
[45] Mueller, M., Breil, F.A., Lurman, G., Klossner, S., Fluck, M., Billeter, R., Dapp, C., Hoppeler, H. Different molecular and structural adaptations with eccentric and conventional strength training in elderly men and women. Gerontology. 2011; 57:528–538. doi: 10.1159/000323267. [DOI] [PubMed] [Google Scholar]
[46] Newman, J.C., Verdin, E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab. 2014; 25:42–52. doi: 10.1016/j.tem.2013.09.002. [DOI] [PubMed] [Google Scholar]
[47] Nielsen, S., Scheele, C., Yfanti, C., Akerstrom, T., Nielsen, A.R., Pedersen, B.K., Laye, M.J. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J. Physiol. 2010; 588:4029–4037. doi: 10.1113/jphysiol.2010.189860. [DOI] [PMC free article] [PubMed] [Google Scholar]
[48] Nitert, M.D., Dayeh, T., Volkov, P., Elgzyri, T., Hall, E., Nilsson, E., Yang, B.T., Lang, S., Parikh, H., Wessman, Y., et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes. 2012; 61:3322–3332. doi: 10.2337/db11-1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
[49] Ogasawara, R., Akimoto, T., Umeno, T., Sawada, S., Hamaoka, T., Fujita, S. MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiol. Genomics. 2016; 48:320–324. doi: 10.1152/physiolgenomics.00124.2015. [DOI] [PubMed] [Google Scholar]
[50] Tarmast, D. The Critical Role of Nutrition in Acceleration of the Rehabilitation Process in Athletes. Journal of Physiology of Training and Sports Injuries, 2024, 2(1):29-39. [Persian]. https://doi.org/10.71702/eps.2024.1106824. [DOI] [Google Scholar]
[51] Petracci, I., Gabbianelli, R., Bordoni, L. The Role of Nutri(epi)genomics in Achieving the Body’s Full Potential in Physical Activity. Antioxidants. 2020; 9:498. doi: 10.3390/antiox9060498. [DOI] [PubMed] [Google Scholar]
[52] Rivas, D.A., Lessard, S.J., Rice, N.P., Lustgarten, M.S., So, K., Goodyear, L.J., Parnell, L.D., Fielding, R.A. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J. 2014; 28:4133–4147. doi: 10.1096/fj.14-254490. [DOI] [PMC free article] [PubMed] [Google Scholar]
[53] Roberts, M.D., Haun, C.T., Vann, C.G., Osburn, S.C., Young, K.C. Sarcoplasmic Hypertrophy in Skeletal Muscle: A Scientific “Unicorn” or Resistance Training Adaptation? Front. Physiol. 2020; 11:816. doi: 10.3389/fphys.2020.00816. [DOI] [PMC free article] [PubMed] [Google Scholar]
[54] Robinson, M.M., Dasari, S., Konopka, A.R., Johnson, M.L., Manjunatha, S., Esponda, R.R., Carter, R.E., Lanza, I.R., Nair, K.S. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell Metab. 2017; 25:581–592. doi: 10.1016/j.cmet.2017.02.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
[55] Rowlands, D.S., Page, R.A., Sukala, W.R., Giri, M., Ghimbovschi, S.D., Hayat, I., Cheema, B.S., Lys, I., Leikis, M., Sheard, P.W., et al. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity. Physiol. Genomics. 2014; 46:747–765. doi: 10.1152/physiolgenomics.00024.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
[56] Ruple, B.A., Godwin, J.S., Mesquita, P.H.C., Osburn, S.C., Vann, C.G., Lamb, D.A., Sexton, C.L., Candow, D.G., Forbes, S.C., Fruge, A.D., et al. Resistance training rejuvenates the mitochondrial methylome in aged human skeletal muscle. FASEB J. 2021;35: e21864. doi: 10.1096/fj.202100873RR. [DOI] [PubMed] [Google Scholar]
[57] Russell, A.P., Lamon, S., Boon, H., Wada, S., Guller, I., Brown, E.L., Chibalin, A.V., Zierath, J.R., Snow, R.J., Stepto, N., et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J. Physiol. 2013; 591:4637–4653. doi: 10.1113/jphysiol.2013.255695. [DOI] [PMC free article] [PubMed] [Google Scholar]
[58] Sailani, M.R., Halling, J.F., Moller, H.D., Lee, H., Plomgaard, P., Pilegaard, H., Snyder, M.P., Regenberg, B. Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle. Sci. Rep. 2019; 9:3272. doi: 10.1038/s41598-018-37895-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
[59] Sanchez, A.M., Candau, R., Bernardi, H. Recent Data on Cellular Component Turnover: Focus on Adaptations to Physical Exercise. Cells. 2019; 8:542. doi: 10.3390/cells8060542. [DOI] [PMC free article] [PubMed] [Google Scholar]
[60] Schaffer, B.E., Levin, R.S., Hertz, N.T., Maures, T.J., Schoof, M.L., Hollstein, P.E., Benayoun, B.A., Banko, M.R., Shaw, R.J., Shokat, K.M., et al. Identification of AMPK Phosphorylation Sites Reveals a Network of Proteins Involved in Cell Invasion and Facilitates Large-Scale Substrate Prediction. Cell Metab. 2015; 22:907–921. doi: 10.1016/j.cmet.2015.09.009. [DOI] [PubMed] [Google Scholar]
[61] Seaborne, R.A., Sharples, A.P. The Interplay Between Exercise Metabolism, Epigenetics, and Skeletal Muscle Remodeling. Exerc. Sport Sci. Rev. 2020; 48:188–200. doi: 10.1249/JES.0000000000000227. [DOI] [PubMed] [Google Scholar]
[62] Seaborne, R.A., Strauss, J., Cocks, M., Shepherd, S., O’Brien, T.D., Someren, K.A.V., Bell, P.G., Murgatroyd, C., Morton, J.P., Stewart, C.E., et al. Methylome of human skeletal muscle after acute & chronic resistance exercise training, detraining & retraining. Sci. Data. 2018; 5:180213. doi: 10.1038/sdata.2018.213. [DOI] [PubMed] [Google Scholar]
[63] Severinsen, M.C.K., Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020; 41:594–609. doi: 10.1210/endrev/bnaa016. [DOI] [PMC free article] [PubMed] [Google Scholar]
[64] Sleiman, S.F., Henry, J., Al-Haddad, R., El Hayek, L., Abou Haidar, E., Stringer, T., Ulja, D., Karuppagounder, S.S., Holson, E.B., Ratan, R.R., et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate. eLife. 2016;5: e15092. doi: 10.7554/eLife.15092. [DOI] [PubMed] [Google Scholar]
[65] Soci, U.P.R., Melo, S.F.S., Gomes, J.L.P., Silveira, A.C., Nobrega, C., de Oliveira, E.M. Exercise Training and Epigenetic Regulation: Multilevel Modification and Regulation of Gene Expression. Adv. Exp. Med. Biol. 2017; 1000:281–322. doi: 10.1007/978-981-10-4304-8_16. [DOI] [PubMed] [Google Scholar]
[66] Solsona, R., Sanchez, A.M.J. Exercise and ribosome biogenesis in skeletal muscle hypertrophy: Impact of genetic and epigenetic factors. J. Physiol. 2021; 599:3803–3805. doi: 10.1113/JP281984. [DOI] [PubMed] [Google Scholar]
[67] Stephens, N.A., Brouwers, B., Eroshkin, A.M., Yi, F., Cornnell, H.H., Meyer, C., Goodpaster, B.H., Pratley, R.E., Smith, S.R., Sparks, L.M. Exercise Response Variations in Skeletal Muscle PCr Recovery Rate and Insulin Sensitivity Relate to Muscle Epigenomic Profiles in Individuals with Type 2 Diabetes. Diabetes Care. 2018; 41:2245–2254. doi: 10.2337/dc18-0296. [DOI] [PubMed] [Google Scholar]
[68] Taylor, J.L., Amann, M., Duchateau, J., Meeusen, R., Rice, C.L. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again. Med. Sci. Sports Exerc. 2016; 48:2294–2306. doi: 10.1249/MSS.0000000000000923. [DOI] [PMC free article] [PubMed] [Google Scholar]
[69] Theilen, N.T., Kunkel, G.H., Tyagi, S.C. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. J. Cell. Physiol. 2017; 232:2348–2358. doi: 10.1002/jcp.25737. [DOI] [PubMed] [Google Scholar]
[70] Tiffon, C. The Impact of Nutrition and Environmental Epigenetics on Human Health and Disease. Int. J. Mol. Sci. 2018; 19:3425. doi: 10.3390/ijms19113425. [DOI] [PMC free article] [PubMed] [Google Scholar]
[71] Turner, D.C., Gorski, P.P., Maasar, M.F., Seaborne, R.A., Baumert, P., Brown, A.D., Kitchen, M.O., Erskine, R.M., Dos-Remedios, I., Voisin, S., et al. DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: The role of HOX genes and physical activity. Sci. Rep. 2020; 10:15360. doi: 10.1038/s41598-020-72730-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
[72] Vechetti, I.J., Jr., Valentino, T., Mobley, C.B., McCarthy, J.J. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J. Physiol. 2021; 599:845–861. doi: 10.1113/JP278929. [DOI] [PubMed] [Google Scholar]
[73] Venkatesh, S., Workman, J.L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 2015; 16:178–189. doi: 10.1038/nrm3941. [DOI] [PubMed] [Google Scholar]
[74] Viollet, B. The Energy Sensor AMPK: Adaptations to Exercise, Nutritional and Hormonal Signals. In: Spiegelman B., editor. Hormones, Metabolism and the Benefits of Exercise. Springer Nature; Cham, Switzerland: 2017. pp. 13–24. [DOI] [PubMed] [Google Scholar]
[75] Widmann, M., Niess, A.M., Munz, B. Physical Exercise and Epigenetic Modifications in Skeletal Muscle. Sports Med. 2019; 49:509–523. doi: 10.1007/s40279-019-01070-4. [DOI] [PubMed] [Google Scholar]
[76] Williams, K., Carrasquilla, G.D., Ingerslev, L.R., Hochreuter, M.Y., Hansson, S., Pillon, N.J., Donkin, I., Versteyhe, S., Zierath, J.R., Kilpelainen, T.O., et al. Epigenetic rewiring of skeletal muscle enhancers after exercise training supports a role in whole-body function and human health. Mol. Metab. 2021; 53:101290. doi: 10.1016/j.molmet.2021.101290. [DOI] [PMC free article] [PubMed] [Google Scholar]
[77] Xie, S.J., Lei, H., Yang, B., Diao, L.T., Liao, J.Y., He, J.H., Tao, S., Hu, Y.X., Hou, Y.R., Sun, Y.J., et al. Dynamic m(6)A mRNA Methylation Reveals the Role of METTL3/14-m(6)A-MNK2-ERK Signaling Axis in Skeletal Muscle Differentiation and Regeneration. Front. Cell Dev. Biol. 2021; 9:744171. doi: 10.3389/fcell.2021.744171. [DOI] [PubMed] [Google Scholar]
[78] Yu, M., Stepto, N.K., Chibalin, A.V., Fryer, L.G., Carling, D., Krook, A., Hawley, J.A., Zierath, J.R. Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J. Physiol. 2003; 546:327–335. doi: 10.1113/jphysiol.2002.034223. [DOI] [PMC free article] [PubMed] [Google Scholar]
[79] Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., Liu, W., Kim, S., Lee, S., Perez-Neut, M., et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019; 574:575–580. doi: 10.1038/s41586-019-1678-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
[80] Zhang, Y., Sun, Z., Jia, J., Du, T., Zhang, N., Tang, Y., Fang, Y., Fang, D. Overview of Histone Modification. Adv. Exp. Med. Biol. 2021; 1283:1–16. doi: 10.1007/978-981-15-8104-5_1. [DOI] [PubMed] [Google Scholar]