Investigating the Effect of the Geometric Shape of the Slit on the Seismic Behavior of the Steel Slit Damper in the Concentric Braced
Subject Areas : Analysis of Structure and Earthquake
Shahrzad Pahang
1
,
Leila Hosseinzadeh
2
1 - Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
2 - Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
Keywords: Slotted Damper, Slot Geometry, Convergent Capability, Stiffness, Resistance, Energy Absorption.,
Abstract :
Considering the challenges related to improving buildings' resistance to vibrations and optimizing their design against earthquakes, several methods have been developed in recent years. One such method involves the use of steel dampers. Among them, slotted dampers have emerged as a promising alternative to conventional techniques used in the construction and structural engineering industries. The performance of these dampers can be influenced by various factors, including their geometric properties and the arrangement of the slots.This study investigates the effect of slot geometry on the seismic behavior of the dampers. To this end, while keeping the slot area constant, three different slot shapes, bean, oval, and rhombus, were analyzed. Dampers with these slot shapes were modeled at three different heights: 140 mm, 210 mm, and 280 mm. The results indicate that the slot shape significantly influences key seismic parameters such as stiffness, ultimate strength, and energy absorption. Among the shapes studied, the rhombus-shaped slots demonstrated superior performance compared to the bean- and oval-shaped ones. Furthermore, an increase in damper height led to a decrease in seismic performance, with stiffness experiencing the most significant.
[1] Sahoo D R, Singhal T, Taraithia S S, Saini A. Cyclic behavior of shear-and-flexural yielding metallic dampers. Journal of Constructional Steel Research. 2015; 114: 247-257. https://doi.org/10.1016/j.jcsr.2015.08.006
[2] Kheyroddin A, Gholhaki M, Pachideh G. Seismic evaluation of reinforced concrete moment frames retrofitted with steel braces using IDA and pushover methods in the near-fault field. Amirkabir Journal of Civil Engineering. 2020; 52(5): 1127-1142. https://doi.org/10.22060/ceej.2018.15235.5858
[3] Benavent-Climent A. A brace-type seismic damper based on yielding the walls of hollow structural sections. Engineering Structures. 2010; 32(4): 1113-1122. https://doi.org/10.1016/j.engstruct.2009.12.037
[4] Saffari H, Hedayat A A, Poorsadeghi Nejad M. Post-Northridge connections with slit dampers to enhance strength and ductility. Journal of Constructional Steel Research. 2013; 80: 138-152. https://doi.org/10.1016/j.jcsr.2012.09.023
[5] Aljawadi A S, Kafi M A, Kafi M A. Mechanical Behaviour of Metallic Yielding Dampers with Different Aspect Ratios. Latin American Journal of Solids and Structures. 2021; 18(2): e353. https://doi.org/10.1590/1679-78256350
[6] یوسفی، محسن؛ نصیرا، یحیی؛ قمری، علی. بررسی عملکرد مدل جدیدی از میراگر مستطیلی در مهاربند همگرای قطری. فصلنامه آنالیز سازه – زلزله. ۱۴۰۰؛ ۱۸ (۱): ۳۹–۵۲.
https://doi.org/10.30495/civil.2021.681417
[7] Bagheri S, Barghian M, Saieri F, Farzinfar A. U-shaped metallic-yielding damper in building structures seismic behavior and comparison with a friction damper. Structures. 2015; 3: 163-171. https://doi.org/10.1016/j.istruc.2015.04.003
[8] Francavilla A B, Latour M, Piluso V, Rizzano G. Design criteria for beam-to-column connections equipped with friction devices. Journal of Constructional Steel Research. 2020; 172: 106240. https://doi.org/10.1016/j.jcsr.2020.106240
[9] Constantinou M C, Symans M D. Experimental study of seismic response of buildings with supplemental fluid dampers. The Structural Design of Tall Buildings. 1993; 2: 93-132. https://doi.org/10.1002/tal.4320020202
[10] Bakhshinezhad S, Mohebbi M. Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II. Structures. 2020; 24: 678-689. https://doi.org/10.1016/j.istruc.2020.07.003
[11] Balendra T, Lim E L, Liaw C Y. Large-Scale Seismic Testing of Knee-Brace-Frame. Journal of Structural Engineering. 1997; 123(1): 11-19. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:1(11)
[12]Tsai K Ch, Chen H W, Hong C P, Su Y F. Design of steel triangular plate energy absorbers for seismic resistance construction. Earthquake Spectra. 1993; 9(3). https://doi.org/10.1193/1.1585741
[13] Christopoulos C, Packer J A, Sabelli R. Posttensioned energy dissipating connections for steel frames with reduced beam sections. Journal of Structural Engineering. 2002; 128(9): 1111-1120. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1111)
[14] Kelly J M, Skinner R I, Heine A J. Mechanisms of energy absorption in special devices for use in earthquake resistant structures. Bulletin of New Zealand Society for Earthquake Engineering. 1972; 5(3): 63-88. https://doi.org/10.5459/bnzsee.5.3.63-88
[15] Whittaker A S, Bertero V V, Alonso L J, Thompson C L. Earthquake simulator testing of steel plate added damping and stiffness elements. Earthquake Engineering Research Center Report, University of California, Berkeley. 1989; UCB/EERC-89/02:1-75. https://doi.org/10.13140/RG.2.2.28164.58243
[16] Tahamouli Roudsari M, Eslamimanesh M B, Entezari A R, Noori O, Torkaman M. Experimental assessment of retrofitting RC moment resisting frames with ADAS and TADAS yielding dampers. Structures. 2018; 14: 75–87. https://doi.org/10.1016/j.istruc.2018.02.005
[17] یوسفی، م؛ نصیرا، ی؛ قمری، ع. بهبود رفتار غیرخطی مهاربندهای همگرا با استفاده از یک میراگر جدید شش ضلعی شکل. فصلنامه آنالیز سازه – زلزله. ۱۳۹۹؛ ۱۸ (۱): ۱–۱۴. https://doi.org/10.30495/civil.2020.708011
[18] Popov E.P, Engelhardt M.D. Seismic eccentrically braced frames. Journal of Constructional Steel Research. 1988; 10: 321–354. https://doi.org/10.1016/0143-974X(88)90034-X
[19] Nakashima M. Strain-hardening behavior of shear panels made of low-yield steel I: Test. Journal of Structural Engineering. 1995; 121(12): 1742–1749.https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1742)
[20] Deng K, Pan P, Sun J, Liu J, Xue Y. Shape optimization design of steel shear panel dampers. Journal of Constructional Steel Research. 2014; 99: 187–193. https://doi.org/10.1016/j.jcsr.2014.03.001
[21] Ji X, Wang Y, Ma Q, Okazaki T. Cyclic behavior of very short steel shear links. Journal of Structural Engineering. 2016; 142(2): 04015119. https://doi.org/10.1061/(ASCE)ST.1943-541X.000137
[22] Abebe DY, Kim JW, Gwak G, Choi JH. Low-cycled hysteresis characteristics of circular hollow steel damper subjected to inelastic behavior. International Journal of Steel Structures. 2019; 19: 157-167. https://doi.org/10.1007/s13296-018-0097-8
[23] Benavent-Climent A, Oh SH, Akiyama H. Ultimate energy absorption capacity of slit-type steel plates subjected to shear deformations. Journal of Structural and Construction Engineering. 1998; 63: 139–147. https://doi.org/10.3130/aijs.63.139_1
[24] Lee CH, Ju YK, Min L, Lho SH, Kim SD. Non-uniform steel strip dampers subjected to cyclic loadings. Engineering Structures. 2015; 99: 192–204. https://doi.org/10.1016/j.engstruct.2015.04.052
[25] Kim J, Jeong J. Seismic retrofit of asymmetric structures using steel plate slit dampers. Journal of Constructional Steel Research. 2016; 120: 232–244. https://doi.org/10.1016/j.jcsr.2016.02.001
[26] Hedayat AA. Prediction of the force displacement capacity boundary of an unbuckled steel slit damper. Journal of Constructional Steel Research. 2015; 114: 30–50. https://doi.org/10.1016/j.jcsr.2015.07.003
[27] Eryaşar ME, Topkaya C. An experimental study on steel-encased buckling-restrained brace hysteretic dampers. Earthquake Engineering & Structural Dynamics. 2010; 39(5): 561–581. https://doi.org/10.1002/eqe.959
[28] Mirtaheri M, Gheidi A, Zandi AP, Alanjari P, Rahmani Samani H. Experimental optimization studies on steel core lengths in buckling restrained braces. Journal of Constructional Steel Research. 2011; 67(8): 1244–1253. https://doi.org/10.1016/j.jcsr.2011.03.004
[29] Mohammadi M, Kafi MA, Kheyroddin A, Ronagh HR. Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading. Structures. 2019; 22: 186–199. https://doi.org/10.1016/j.istruc.2019.07.014
[30] Connor JJ, Wada A, Iwata M, Huang YH. Damage-Controlled Structures. I: Preliminary Design Methodology for Seismically Active Regions. Journal of Structural Engineering. 1997; 123(4): 423–431. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:4(423)
[31] Lee MH, Oh SH, Huh C, Oh YS, Yoon MH, Moon TS. Ultimate energy absorption capacity of steel plate slit dampers subjected to shear force. International Journal of Steel Structures. 2002; 2(2): 71–79. Available at: https://www.researchgate.net/publication/291159996_Ultimate_energy_absorption_capacity_of_steel_plate_slit_dampers_subjected_to_shear_force
[32] Chan RWK, Albermani F. Experimental study of steel slit damper for passive energy dissipation. Engineering Structures. 2008; 30(4): 1058–1066. https://doi.org/10.1016/j.engstruct.2007.07.005
[33] Tagawa H, Yamanishi T, Takaki A, Chan RWK. Cyclic behavior of seesaw energy dissipation system with steel slit dampers. Journal of Constructional Steel Research. 2016; 117: 24–34. https://doi.org/10.1016/j.jcsr.2015.09.014
[34] Lee J, Kim J. Development of box-shaped steel slit dampers for seismic retrofit of building structures. Engineering Structures. 2017;150:934–946. https://doi.org/10.1016/j.engstruct.2017.07.082
[35] Askariani SS, Garivani S. Introducing and numerical study of a new brace-type slit damper. Structures. 2020; 27: 702-717. https://doi.org/10.1016/j.istruc.2020.06.019
[36] Zhou X, Tan Y, Ke K, Yam MCH, Zhang H, Xu J. An experimental and numerical study of brace-type long double C-section steel slit dampers. Journal of Building Engineering. 2023; 64: 105555. https://doi.org/10.1016/j.jobe.2022.105555
[37] Seyedsina Seyedjafari Olia SS, Saffari H. A novel slit damper configuration to enhance ductility and seismic behavior of concentrically braced frames. Structures. 2024;66:106823. https://doi.org/10.1016/j.istruc.2024.106823