The Benefits of Biochar in Agricultural Ecosystems, Soil Properties and Reducing the Harmful Effects of Drought Stress, Heavy Metals and Greenhouse Gases: A Review
Subject Areas : Research On Crop EcophysiologySADEGH GHOREISHI 1 , ALIREZA TAAB 2
1 -
2 -
Keywords: Keyword: Drought Stress, Biochar, Organic Matter, Phytoremediation, Soil Fertilty.,
Abstract :
Abstract
Food security is challenged by drought stress and water scarcity, especially in arid and semi-arid regions. Additionally, drought stress on agriculture and population growth exacerbate the need for food due to a decrease in water resources and drought stress on agriculture. By disrupting nutrient balance, gas exchange, and primary and secondary metabolisms, water deficiency decreases performance and plant growth. A biochar soil amendment has been proposed to increase water and nutrient efficiency and increase long-term productivity. There have been numerous studies demonstrating that biochar can improve the physical and chemical characteristics of soil, retaining organic matter and moisture. Biochar has a low density and high surface area, resulting in a high adsorption capacity, which helps retain nutrients, reduce leaching, and improve soil fertility. The porous structure of biochar can also reduce the bulk density of soil, thereby improving water retention. Therefore, this study was done in order to survey the benefits of biochar in agricultural ecosystems, soil properties and reducing the harmful effects of drought stress, heavy metals and greenhouse gases. Most of the studies on biochar have been short-term, which questions the long-term fate of heavy metals, therfore long-term studies should be done. It can be expected that due to aging processes, the ability of biochar to separate heavy metals decreases with time. Large-scale and long-term well-designed field experiments are needed to evaluate the feasibility of the proposed approach regarding the impact of biochar on vegetation, increasing soil quality, preserving the environment, and coping with drought stress. The stability of this material and its resistance to decomposition causes the long-term accumulation of carbon in the soil and reduces the intensity of greenhouse gas emissions, including carbon dioxide and nitrous oxide, and its effects on global warming and climate change. Although the stability of biochar in soil is a long-term process, environmental stresses accelerate the degradation of biochar and indicate the need to mitigate climate change. Nevertheless, the application of biochar helps to reduce adverse climatic effects and can lead to sustainable strengthening of food security.
Keyword: Drought Stress, Biochar, Organic Matter, Phytoremediation, Soil Fertilty.
REFERENCES
Rezaei A., Lotfi B., Jafari M., Bahamin S. 2015, January. Survey of effects of PGPR and salinity on the characteristics of Nigella leaves. In Biol Forum Int J (Vol. 7, No. 1, pp. 1045-1049).
Abbas T, Rizwan M, Ali S et al 2018. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged contaminated soil. Ecotoxicol Environ Saf 148:825–833. https://doi.org/10.1016/j.ecoenv.2017.11.063
Abel S., Peters A., Trinks S., Schonsky H., Facklam M., Wessolek G. 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202, 183-191.
Abideen Z, Koyro HW, Huchzermeyer B et al 2020. Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biol 22:259–266. https://doi.org/10.1111/plb.13054
Afshar RK, Hashemi M, DaCosta M et al 2016. Biochar application and drought stress effects on physiological characteristics of Silybum marianum. Commun Soil Sci Plant Anal 47:743–752. https://doi.org/10.1080/00103624.2016.1146752
Agbna G. H., Dongli S., Zhipeng L., Elshaikh N. A., Guangcheng S., Timm L. C. 2017. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Scientia Horticulturae, 222, 90-101.
Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 99: 19–33. doi:10.1016/j.chemosphere.2013.10.071.
Ajayi A. E., Horn R. 2016. Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil and Tillage Research, 164, 34-44.
Akhtar S. S., Andersen M. N., LiuF. 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61-68.
Akhtar, S. S., Li, G., Andersen, M. N., & Liu, F. (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138, 37-44.
Angin D, Şensöz, S. 2014. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.). Int J Phytoremediation. 16(7–12):684–693. doi:10.1080/15226514. 2013.856842.
Anjum S. A., Ashraf U., Tanveer M., Khan I., Hussain S., Shahzad B., Wang L. C. 2017. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Frontiers in plant science, 8.
Ansori A.N.M. N. Mashal M. Rebezov B. Dashtipour A. Al Kafi M.M. Heydari l. Fatolahi A. Nagdalian V.K. Gupta K. Pal, M.H. Acar. 2025. Fe3O4@TiO2 NCs promoted preparation of newxanthene derivatives as dyes along with evaluation of biological activity, Journal of Medical, Chemical and Biomedical Engineering, 1(1), 40-52.
Arndt S. K., Clifford S. C., Wanek W., Jones H. G., Popp M. 2001. Physiological and morphological adaptations of the fruit tree Ziziphus rotundifolia in response to progressive drought stress. Tree physiology, 21(11), 705-715.
Bahamin S., Maleki A. 2020. Meta-Analysis of the Effect of Drought Stress on Quantitative and Qualitative Yield of Nigella Sativa. Research On Crop Ecophysiology, 15(1), 21-35.
Baiamonte G, Crescimanno G, Parrino F, De Pasquale C 2019. Effect of biochar on the physical and structural properties of a desert sandy soil. CATENA 175:294–303. https://doi.org/10.1016/j.catena.2018.12.019
Baronti S, Vaccari FP, Miglietta F et al (2014) Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur J Agron 53:38–44. https://doi.org/10.1016/j.eja.2013.11.003
Basalirwa D, Sudo S, Wacal C et al 2020. Assessment of crop residue and palm shell biochar incorporation on greenhouse gas emissions during the fallow and crop growing seasons of broccoli (Brassica oleracea var. italica). Soil Tillage Res. https://doi.org/10.1016/j.still.2019.104435
Basso A. S., Miguez F. E., Laird D. A., Horton R., Westgate M. 2013. Assessing potential of biochar for increasing water‐holding capacity of sandy soils. Gcb Bioenergy, 5(2), 132-143.
Bilias F., Nikoli T., Kalderis D., Gasparatos D. 2021. Towards a soil remediation strategy using biochar: Effects on soil chemical properties and bioavailability of potentially toxic elements. Toxics, 9(8), 184.
Blanco-Canqui, H. 2017. Biochar and soil physical properties. Soil Science Society of America Journal, 81(4), 687-711.
Brantley KE, Brye KR, Savin MC, Longer DE 2015. Biochar source and application rate effects on soil water retention determined using wetting curves. Open J Soil Sci 05:1–10. https://doi.org/10.4236/ojss.2015.51001
Briggs C. M., Breiner J., Graham R. C. 2005, November. Contributions of Pinus Ponderosa charcoal to soil chemical and physical properties. In The ASACSSA-SSSA International Annual Meetings. Salt Lake City, USA (Vol. 13).
Chen H. X., Du Z. L., Guo W., Zhang Q. Z. 2011. Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain. Ying yong sheng tai xue bao= The journal of applied ecology, 22(11), 2930-2934.
Cornelissen G, Jubaedah NNL et al 2018. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Sci Total Environ 634:561–568. https://doi.org/10.1016/j.scitotenv.2018.03.380
Cui L., Pan G., Li L., Bian R., Liu X., Yan J., Hussain Q. 2016. Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: a five-year field experiment. Ecological engineering, 93, 1-8.
Dai S, Li H, Yang Z, Dai M, Dong X, Ge X, Sun M, Shi L. 2018. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Hum Ecol Risk Assess. 24(7):1887–1900. doi:10.1080/10807039.2018.1429250.
Deenik J. L., McClellan T., Uehara G., Antal M. J., Campbell S. 2010. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal, 74(4), 1259-1270.
Ding Y., Liu Y., Liu S., Li Z., Tan X., Huang X., Zheng B. 2016. Biochar to improve soil fertility. A review. Agronomy for sustainable development, 36(2), 1-18.
Ding Y., Liu Y., Liu S., Li Z., Tan X., Huang X., Zheng B. 2016. Biochar to improve soil fertility. A review. Agronomy for sustainable development, 36(2), 1-18.
Dume B. Berecha G. and Tulu S. 2015. Characterization of biochar produced at different temperatures and its effect on acidic Nitosol of Jimma, Southwest Ethiopia. International Journal of Soil Science 10:63-73.
Edeh I. G., Mašek O., Buss W. 2020. A meta-analysis on biochar's effects on soil water properties–New insights and future research challenges. Science of the Total Environment, 714, 136857.
Edwards JD, Pittelkow CM, Kent AD, Yang WH 2018. Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biol Biochem 122:81–90. https://doi.org/10.1016/j.soilbio.2018.04.008
Egamberdieva D, Reckling M, Wirth S (2017) Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. Eur J Soil Biol 78:38–42. https://doi.org/10.1016/j.ejsobi.2016.11.007
El-Naggar A., Lee S. S., Rinklebe J., Farooq M., Song H., Sarmah A. K., Ok Y. S. 2019. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536-554.
El-Naggar A., Lee S. S., Rinklebe J., Farooq M., Song H., Sarmah A. K., Ok Y. S. 2019. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma, 337, 536-554.
Ezati N., Maleki A., Fathi A. 2020. Effect of drought stress and spraying of gibberellic acid and salicylic acid on the quantitative and qualitative yield of canola (Brassica napus). Journal of Iranian Plant Ecophysiological Research, 14(56), 94-109.
Faloye O. T., Alatise M. O., Ajayi A. E., Ewulo B. S. 2019. Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation. Agricultural Water Management, 217, 165-178.
Fathi A., Bahamin S. 2018. The effect of irrigation levels and foliar application (zinc, humic acid and salicylic acid) on growth characteristics, yield and yield components of roselle (Hibiscus sabdariffa L.). Environmental Stresses in Crop Sciences, 11(3), 661-674.
Fathi A., Maleki A., Naseri R. 2022. A review of the effects of drought stress on plants and some effective strategies in crop management. Journal of Iranian Plant Ecophysiological Research, 17 (2),1 -29. doi: 10.30495/iper.2022.1944163.1744.
Fischer D., Glaser B. 2012. Synergisms between compost and biochar for sustainable soil amelioration. Management of organic waste, 1, 167-198.
Forján R, Asensio V, Rodr_ıguez-Vila A, Covelo EF. 2016. Contribution of waste and biochar amendment to the sorption of metals in a copper mine tailing. Catena. 137:120–125. doi:10.1016/j.catena.2015.09.010.
Gao S, Wang D, Dangi SR et al (2020) Nitrogen dynamics affected by biochar and irrigation level in an onion field. Sci Total Environ 714:136432
Gasco G, Alvarez ML, Paz-Ferreiro J, M_endez A. 2019. Combinin phytoextraction by Brassica napus and biochar amendment for the remediation of a mining soil in Riotinto (Spain). Chemosphere. 231:562–570. doi:10.1016/j.chemosphere.2019.05.168.
Ghadirnezhad Shiade S. R., Fathi A., Taghavi Ghasemkheili F., Amiri E., Pessarakli M. 2022. Plants’ responses under drought stress conditions: Effects of strategic management approaches—a review. Journal of Plant Nutrition, 1-33.
Gholami A., Maleki A., Mirzaeiheydari M., Babaei F. 2024. Effect of nitrogen fertilizer and zinc sulfate on growth, physiological, biochemical and nutrient use efficiency in fodder maize under irrigation regimes. Journal of Plant Nutrition, 47(19), 3701-3720.
Ghorbani M., Asadi H., Abrishamkesh S. 2019. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. International soil and water conservation research, 7(3), 258-265.
Ghosh D, Masto RE, Maiti SK. 2020. Ameliorative effect of Lantana biochar on coal mine spoil and growth of maize (3). Soil use manage. 36:726–739. doi:10.1111/sum.12626.
Giancarla V., Madosa E., Sumalan R., Ciulca A., Petolescu C. 2012. Evaluation of some indirect indices to identify drought tolerance in barley. JOURNAL of Horticulture, Forestry and Biotechnology, 16(1), 239-241.
Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and fertility of soils, 35(4), 219-230.
Griffin DE, Wang D, Parikh SJ, Scow KM (2017) Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agric Ecosyst Environ 236:21–29. https://doi.org/10.1016/j.agee.2016.11.002
Gullap M. K., Severoglu S., Karabacak T., Yazici A., Ekinci M., Turan M., Yildirim E. 2022. Biochar derived from hazelnut shells mitigates the impact of drought stress on soybean seedlings. New Zealand Journal of Crop and Horticultural Science, 1-19.
Haddad S. A., Mowrer J., Thapa B. 2022. Biochar and compost from cotton residues inconsistently affect water use efficiency, nodulation, and growth of legumes under arid conditions. Journal of Environmental Management, 307, 114558.
Hardie M, Clothier B, Bound S et al (2014) Does biochar influence soil physical properties and soil water availability? Plant Soil 376:347–361. https://doi.org/10.1007/s11104-013-1980-x
Herath H.M. Arbestain M.C. and Hedley M. 2013. Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209-210:188–197.
Heydar Naeim Delfi, and Mohammad Mirzaei Heydari. (2022). Flow and Effects of Phosphorus From Soil to Plant. Research on Crop Ecophysiology, 17(1), 64-74.
Hodgson E, Lewys-James A, Rao Ravella S, Thomas-Jones S, Perkins W, Gallagher J. 2016. Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks. Bioresour Technol. 214:574–581. doi:10.1016/j.biortech.2016.05.009.
Hossain M. K., Strezov V., Chan K. Y., Nelson P. F. 2010. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 78(9), 1167-1171.
Hu YL, Mgelwa AS, Singh AN, Zeng DH. 2018. Differential responses of the soil nutrient status, biomass production, and nutrient uptake for three plant species to organic amendments of placer gold minetailing soils. Land Degrad Dev. 29(9):2836–2845. doi:10.1002/ldr. 3002.
Hussain S., Hussain S., Qadir T., Khaliq A., Ashraf U., Parveen A., Rafiq M. 2019. Drought stress in plants: An overview on implications, tolerance mechanisms and agronomic mitigation strategies. Plant Science Today, 6(4), 389-402.
Imad Alwan Kattan, and Mohammad Mirzaei Heydari. 2022. Effect of Drought and Heat Stress on Growth and Yield and Quality of Wheat (Triticum aestivum L.). Research on Crop Ecophysiology, 17(2), 1-10.
Inyang M. I., Gao B., Yao Y., Xue Y., Zimmerman A., Mosa A., Cao, X. 2016. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406-433.
Iqbal H., Yaning C., Waqas M., Rehman H., Shareef M., Iqbal S. 2018. Hydrogen peroxide application improves quinoa performance by affecting physiological and biochemical mechanisms under water‐deficit conditions. Journal of Agronomy and Crop Science, 204(6), 541-553.
Irfan M., Mudassir M., Khan M. J., Dawar K. M., Muhammad D., Mian I. A., Dewil R. 2021. Heavy metals immobilization and improvement in maize (Zea mays L.) growth amended with biochar and compost. Scientific Reports, 11(1), 1-9.
Jangir C. K., Panghaal D., Kumar A., Ram S., Jakhar M. K. C., Sharma J. 2017. Effect of biochar to improve soil health, reduced carbon emission and mitigation of greenhouse gaseous-A review. J Pharmacogn Phytochem, 808-811.
Jeffery S, Abalos D, Prodana M et al (2017) Biochar boosts tropical but not temperate crop yields. Environ Res Lett 12:53001. https://doi.org/10.1088/1748-9326/aa67bd
Jeffery S., Abalos D., Prodana M., Bastos A. C., Van Groenigen J. W., Hungate, B. A., Verheijen, F. 2017. Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5), 053001.
Jeffery S., Verheijen F. G., van der Velde, M., Bastos A. C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, ecosystems & environment, 144(1), 175-187.
Jones DL, Murphy DV, Khalid M et al (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731. https://doi.org/10.1016/j.soilbio.2011.04.018
Joseph S., Cowie A. L., Van Zwieten L., Bolan N., Budai A., Buss W., Lehmann, J. 2021. How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13(11), 1731-1764.
Kammann C., Graber E. R. 2015. Biochar effects on plant ecophysiology. In Biochar for environmental management (pp. 423-452). Routledge.
Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity–Results from a short-term pilot field study. Agriculture, ecosystems & environment, 140(1-2), 309-313.
Khalvandi M., Siosemardeh A., Roohi E., Keramati S. 2021. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 7(1), e05908.
Khan AZ, Khan S, Khan MA, Alam M, Ayaz T. 2020. Biochar reduced the uptake of toxic heavy metals and their associated health risk via rice (Oryza sativa L.) grown in Cr-Mn mine contaminated soils. Environ Technol Innov. 17:100590. doi:10.1016/j.eti.2019.100590.
Khan M., Islam M. R., Panaullah G. M., Duxbury J. M., Jahiruddin M., Loeppert R. H. 2010. Accumulation of arsenic in soil and rice under wetland condition in Bangladesh. Plant and Soil, 333(1), 263-274.
Kheiri Sis, M., Jahanbakhsh Godehkahriz S., Raeesi sadati S. 2021. Putrescine impact in increasing the tolerance of plants to drought stress on some of Biochemical Parameters in wheat. Journal of Plant Research (Iranian Journal of Biology), 34(2), 464-478.
Kuppusamy S., Thavamani P., Megharaj M., Venkateswarlu K., Naidu R. 2016. Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environment international, 87, 1-12.
Laird D. A., Fleming P., Davis D. D., Horton R., Wang B., Karlen D. L. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158(3-4), 443-449.
Langeroodi A. R. S., Campiglia E., Mancinelli R., Radicetti E. 2019. Can biochar improve pumpkin productivity and its physiological characteristics under reduced irrigation regimes?. Scientia Horticulturae, 247, 195-204.
Lehmann J. 2007. A handful of carbon. Nature, 447(7141), 143-144.
Lehmann J., Joseph S. 2015. Biochar for environmental management: an introduction. In: Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed. Earthscan from Routledge, London, pp. 1–1214.
Li X, Song Y, Wang F, Bian Y, Jiang X. 2019. Combined effects of maize straw biochar and oxalic acid on the dissipation of polycyclic aromatic hydrocarbons and microbial community structures in soil: a mechanistic study. J. Hazard. Mater. 364:325–331. doi:10.1016/j.jhazmat.2018.10.041.
Li D., Zhao R., Peng X., Ma Z., Zhao Y., Gong T., Xi B. 2020. Biochar-related studies from 1999 to 2018: a bibliometrics-based review. Environmental Science and Pollution Research, 27(3), 2898-2908.
Li S., Wang W., Liang F., Zhang W. X. 2017. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of hazardous materials, 322, 163-171.
Liu C, Liu F, Ravnskov S et al 2017. Impact of wood biochar and its interactions with mycorrhizal fungi, phosphorus fertilization and irrigation strategies on potato growth. J Agron Crop Sci 203:131–145. https://doi.org/10.1111/jac.12185
Liu Y, Sohi SP, Liu S, Guan J, Zhou J, Chen J. 2019. Adsorption and reductive degradation of Cr (VI) and TCE by a simply synthesized zero valent iron magnetic biochar. J Environ Manage. 235:276–281. doi:10.1016/j.jenvman.2019.01.045.
Liu W., Huo R., Xu J., Liang S., Li J., Zhao T., Wang, S. 2017. Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Bioresource Technology, 235, 43-49.
Liu X., Wei Z., Ma Y., Liu J., Liu F. (2021a). Effects of biochar amendment and reduced irrigation on growth, physiology, water-use efficiency and nutrients uptake of tobacco (Nicotiana tabacum L.) on two different soil types. Science of the Total Environment, 770, 144769.
Liu X., Wei Z., Manevski K., Liu J., Ma Y., Andersen M. N., Liu F. (2021b). Partial root-zone drying irrigation increases water-use efficiency of tobacco plants amended with biochar. Industrial Crops and Products, 166, 113487.
Lyu S., Du G., Liu Z., Zhao L., Lyu D. 2016. Effects of biochar on photosystem function and activities of protective enzymes in Pyrus ussuriensis Maxim. under drought stress. Acta Physiologiae Plantarum, 38(9), 1-10.
Macdonald L. M., Farrell M., Zwieten L. V., Krull E. S. 2014. Plant growth responses to biochar addition: an Australian soils perspective. Biology and fertility of soils, 50(7), 1035-1045.
Maleki A., Fathi A., Bahamin S. 2020. The effect of gibberellin hormone on yield, growth indices, and biochemical traits of corn (Zea Mays L.) under drought stress. Journal of Iranian Plant Ecophysiological Research, 15(59), 1-16.
Mannan M, Halder E, Karim M, Ahmed J 2017. Alleviation of adverse effect of drought stress on soybean (Glycine max. L.) by using poultry litter biochar. Bangladesh Agron J 19:61–69. https://doi.org/10.3329/baj.v19i2.31854
Mannan MA, Shashi MA 2020. Amelioration of drought tolerance in maize using rice husk biochar. Maize Prod Use. https://doi.org/10.5772/intechopen.88824
Martí E., Sierra J., Domene X., Mumbrú M., Cruañas R., Garau M. A. 2021. One-year monitoring of nitrogen forms after the application of various types of biochar on different soils. Geoderma, 402, 115178.
Martinsen V., Mulder J., Shitumbanuma V., Sparrevik M., Børresen T., Cornelissen G. 2014. Farmer‐led maize biochar trials: Effect on crop yield and soil nutrients under conservation farming. Journal of Plant Nutrition and Soil Science, 177(5), 681-695.
McBeath A. V., Smernik R. J., Krull E. S., Lehmann, J. 2014. The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study. Biomass and Bioenergy, 60, 121-129.
Mhaibes R.M., Arzehgar Z., Mirzaei H.M., Fatolahi L. 2023. ZnO Nanoparticles: A highly efficient and recyclable catalyst for tandem knoevenagel-michael-cyclocondensation reaction. Asian Journal of Green Chemistry. No. 7, pp. 1-8.
Mirzaei Heydari M. and Kabodi S., 2020. Study the Effects of Micro-nutrients, Macro-nutrients and Plant Shading on Quantitative Traits of Tomato) Lycopersicon esculentum). Research on Crop Ecophysiology. 15(1), 87–95.
Mirzaei Heydari M., Brook R. M., Jones D. L. 2024. Barley Growth and Phosphorus Uptake in Response to Inoculation with Arbuscular Mycorrhizal Fungi and Phosphorus Solubilizing Bacteria. Communications in Soil Science and Plant Analysis, 55(6), 846-861.
Mohamed I., Zhang G. S., Li Z. G., Liu Y., Chen F., Dai, K. 2015. Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecological Engineering, 84, 67-76.
Mohammadi F., Maleki A., Fathi A. 2021. Effects of Drought Stress and Humic Acid on Plant Growth, Yield Quality and Its Components of Quinoa (Chenopodium quinoa Willd). Journal of Crop Nutrition Science, 7(3), 11-23.
Mulcahy DN, Mulcahy DL, Dietz D 2013. Biochar soil amendment increases tomato seedling resistance to drought in sandy soils. J Arid Environ 88:222–225. https://doi.org/10.1016/j.jaridenv.2012.07.012
Nartey O. D., Zhao B. 2014. Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview. Advances in Materials Science and Engineering, 2014.
Nassiri Mahallati M., Bahamin S., Fathi A., Beheshti S. A. 2022. The Effect of Drought Stress on Yield and Yield Components of Maize Using Meta-Analysis Method. Applied Field Crops Research, 35(1), 53-35.
Natig Jafar Ali Al-Khazali, and Mohammad Mirzaei Heydari. 2023. Investigating the Effect of Different Amounts and Sources of Nitrogen on Quantitative and Qualitative Characteristics of Rice. Research on Crop Ecophysiology. 18 92):112-122.
Norini MP, Thouin H, Miard F, Battaglia-Brunet F, Gautret P, Gu_egan R, Le Forestier L, Morabito D, Bourgerie S, Motelica-Heino M. 2019. Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. J Environ Manage. 232:117–130. doi:10.1016/j.jenvman.2018.11.021.
Novak J. M., Busscher W. J., Laird D. L., Ahmedna M., Watts D. W., Niandou M. A. 2009. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil science, 174(2), 105-112.
Obia A., Mulder J., Martinsen V., Cornelissen G., Børresen T. 2016. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 155, 35-44.
Oki T., Kanae S. 2006. Global hydrological cycles and world water resources. science, 313(5790), 1068-1072.
Pan D., Liu C., Yu H., Li F. 2019. A paddy field study of arsenic and cadmium pollution control by using iron-modified biochar and silica sol together. Environmental Science and Pollution Research, 26(24), 24979-24987.
Panwar N. L., Pawar A., Salvi B. L. 2019. Comprehensive review on production and utilization of biochar. SN Applied Sciences, 1(2), 1-19.
Per T. S., Khan M. I. R., Anjum N. A., Masood A., Hussain S. J., Khan N. A. 2018. Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environmental and experimental botany, 145, 104-120.
Rajkovich S. Enders A. and Hanley K. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils 48:271–284.
Ramzani P. M. A., Shan L., Anjum S., Ronggui H., Iqbal M., Virk Z. A., Kausar S. 2017. Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost. Plant physiology and biochemistry, 116, 127-138.
Ray D. K., Mueller N. D., West P. C., Foley J. A. 2013. Yield trends are insufficient to double global crop production by 2050. PloS one, 8(6), e66428.
Razzaghi F., Obour P. B., Arthur E. 2020. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361, 114055.
Roberts L. C., Hug S. J., Dittmar J., Voegelin A., Kretzschmar R., Wehrli B., Badruzzaman A. B. M. 2010. Arsenic release from paddy soils during monsoon flooding. Nature Geoscience, 3(1), 53-59.
Rodríguez-Vila A, Covelo EF, Forj_an R, Asensio V. 2015. Recovering a copper mine soil using organic amendments and phytomanagement with Brassica juncea L. J Environ Manage. 147:73–80. doi:10.1016/j.jenvman.2014.09.011.
Salehi, R., Maleki, A., Mirzaei Heydari, M., Rangin, A. and Alireza A. (2022). The Effect of Foliar Application of Iron and Proline Nanoparticles on Biochemical, Physiological and Agronomic Traits of Quinoa Plant in Different Cultivation Dates. Research on Crop Ecophysiology. 17(2), 130-146.
Sánchez-García M, Roig A, Sánchez-Monedero MA, Cayuela ML (2014) Biochar increases soil N 2 O emissions produced by nitrification-mediated pathways. Front Environ Sci. https://doi.org/10.3389/fenvs.2014.00025
Sarong, M., & Orge, R. F. (2015). Effect of rice hull biochar on the fertility and nutrient holding capacity of sandy soils. OIDA International Journal of Sustainable Development, 8(12), 33-44.
Sattar A, Sher A, Ijaz M et al (2019) Biochar application improves the drought tolerance in maize seedlings. Phyton B Aires 88:379–388. https://doi.org/10.32604/phyton.2019.04784
Setayesh-Mehr Z., Ganjeali A. 2013. Effects of Drought Stress on Growth and Physiological Characteristics of Dill (Anethum graveolens L.). Journal of Horticultural Science, 27(1), 27-35.
Shakoor A, Shahzad SM, Chatterjee N et al 2021. Nitrous oxide emission from agricultural soils: application of animal manure or biochar? A global meta-analysis. J Environ Manage 285:112170
Sohi S. P., Krull E., Lopez-Capel E., Bol R. 2010. A review of biochar and its use and function in soil. Advances in agronomy, 105, 47-82.
Spokas K. A., Cantrell K. B., Novak J. M., Archer D. W., Ippolito J. A., Collins H. P., Nichols K. A. 2012. Biochar: a synthesis of its agronomic impact beyond carbon sequestration. Journal of environmental quality, 41(4), 973-989.
Sun, G. (2004). Arsenic contamination and arsenicosis in China. Toxicology and applied pharmacology, 198(3), 268-271.
Sun Z., Bruun E. W., Arthur E., de Jonge L. W., Moldrup P., Hauggaard-Nielsen H., Elsgaard L. 2014. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biology and Fertility of Soils, 50(7), 1087-1097.
Taheri F., Maleki A., Fathi A. 2021. Study of different levels of nitrogen fertilizer and irrigation on quantitative and qualitative characteristics of quinoa grain yield. Crop Physiology Journal. 13(50):135-149.
Thinley J., Dorji C. 2021. Screening of beans (Phaseolus vulgaris L.) genotypes for drought tolerance. bioRxiv.
Tian X, Li Z, Wang Y et al 2021. Evaluation on soil fertility quality under biochar combined with nitrogen reduction. Sci Rep 11:13792. https://doi.org/10.1038/s41598-021-93200-0
Tood Revell K. 2011. The effect of fast pyrolysis biochar made from poultry litter on soil properties and plant growth. Master of Science Thesis. Virginia Polytechnic Institute and State University, USA.
Trupiano D., Cocozza C., Baronti S., Amendola C., Vaccari F. P., Lustrato G., Scippa, G. S. 2017. The effects of biochar and its combination with compost on lettuce (Lactuca sativa L.) growth, soil properties, and soil microbial activity and abundance. International Journal of Agronomy, 2017.
Umair Hassan M., Aamer M., Umer Chattha M., Haiying T., Shahzad B., Barbanti L., Guoqi H. 2020. The critical role of zinc in plants facing the drought stress. Agriculture, 10(9), 396.
Van Zwieten L., Kimber S., Morris S., Chan K. Y., Downie A., Rust J., Cowie A. 2010. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and soil, 327(1), 235-246.
Wang H. Y., Wen S. L., Chen P., Zhang L., Cen K., Sun G. X. 2016. Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields. Environmental Science and Pollution Research, 23(4), 3781-3788.
Waraich E. A., Ahmad R., Ashraf M. Y. 2011. Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 5(6), 764-777.
Williams L., Salt D. E. 2009. The plant ionome coming into focus. Current Opinion in Plant Biology, 12(3), 247.
Wu F. Jia Z. Wang S.S. Chang X. and Startse A. 2013. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biology and Fertility of Soils 49:555–565.
Xiao Y, Yang S, Xu J et al 2018. Effect of biochar amendment on methane emissions from paddy field under water-saving irrigation. Sustain. https://doi.org/10.3390/su10051371
Yaashikaa PR, Senthil Kumar P, Varjani SJ, Saravanan A. 2019. Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresour Technol. 292:122030. doi:10.1016/j.biortech.2019.122030.
Yang S, Jiang Z, Sun X et al 2018. Effects of biochar amendment on co2 emissions from paddy fields under water-saving irrigation. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15112580
Yang X., Lu K., McGrouther K., Che L., Hu G., Wang Q., Wang H. 2017. Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. Journal of soils and sediments, 17(3), 751-762.
Ye L., Camps‐Arbestain M., Shen Q., Lehmann J., Singh B., Sabir M. 2020. Biochar effects on crop yields with and without fertilizer: A meta‐analysis of field studies using separate controls. Soil Use and Management, 36(1), 2-18.
Youssef S., Riad G., Abu El-Azm N. A. I., Ahmed E. 2018. Amending sandy soil with biochar or/and superabsorbent polymer mitigates the adverse effects of drought stress on green pea. Egyptian Journal of Horticulture, 45(1), 169-183.
Yuan P., Wang J., Pan Y., Shen B., Wu C. 2019. Review of biochar for the management of contaminated soil: Preparation, application and prospect. Science of the total environment, 659, 473-490.
Zhan F, Zeng W, Yuan X, Li B, Li T, Zu Y, Jiang M, Li Y. 2019. Field experiment on the effects of sepiolite and biochar on the remediation of Cd- and Pb-polluted farmlands around a Pb-Zn mine in Yunnan Province, China. Environ Sci Pollut Res Int. 26(8): 7743–7751. doi:10.1007/s11356-018-04079-w.
Zhang A. Liu Y. Pan G. Hussain Q. Li L. Zheng J. and Zhang X. 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil from central China plain. Plant and Soil 351:263–275.
Zhang J, Bai Z, Huang J et al 2019. Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil Tillage Res. https://doi.org/10.1016/j.still.2019.104372.
Zhang Q, Xiao J, Xue J, Zhang L (2020a) Quantifying the effects of biochar application on greenhouse gas emissions from agricultural soils: a global meta-analysis. Sustain 12:3436. https://doi.org/10.3390/SU12083436.
Zhang Y., Ding J., Wang H., Su L., Zhao, C. 2020. Biochar addition alleviate the negative effects of drought and salinity stress on soybean productivity and water use efficiency. BMC Plant Biology, 20(1), 1-11.
Zhao H., Dai T., Jing Q., Jiang D., Cao W. 2007. Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regulation, 51(2), 149-158.
Zhu K, Ye X, Ran H et al 2022. Contrasting effects of straw and biochar on microscale heterogeneity of soil O2 and pH: implication for N2O emissions. Soil Biol Biochem 166:108564. https://doi.org/10.1016/j.soilbio.2022.108564.