Molecular Identification of Biofilm-Producing Genes in Pseudomonas Isolates from Infected Dog Wounds
Subject Areas : Journal of Veterinary Clinical and Laboratory Research(JLACSR)
mohammad oladi
1
,
Babak Kheirkhah
2
1 - دانش آموخته ی دانشگاه آزاد واحد بافت
2 - Assistant Professor of Molecular Cell Biology_Microbiology, Azad University of baft,
Keywords: Molecular identification, biofilm-producing genes, Pseudomonas, infected wounds, dog,
Abstract :
Chronic and treatment-resistant infections caused by Pseudomonas aeruginosa in pets have become a serious challenge. This opportunistic Gram-negative bacterium is considered a threat to the health of dogs and cats due to its wide distribution, resistance to adverse conditions, and the effective role of biofilms in survival and increased drug resistance. The aim of this study was to determine the molecular identity of biofilm-producing genes in Pseudomonas isolated from infected dog wounds. In this descriptive-cross-sectional study, which was conducted during the first three months of 2024 with the aim of identifying biofilm-forming genes in isolates isolated from infected dog wounds, clinical samples were collected from 100 infected dogs in veterinary centers in Tehran and after identification, 60 Pseudomonas aeruginosa isolates were obtained. PCR results showed that the lasB gene was detected in 98.3%, lasI and rhII genes in 96.7% each, and the rhI gene in only 16.7% of the isolates, and only 10 isolates had all four genes. Also, 80% of the strains were phenotypically capable of producing significant biofilm. It can be concluded that the high prevalence of biofilm-related genes has caused the persistence of infection and treatment resistance in this population; it is recommended that future research investigates the relationship between the genetic pattern of biofilm formation and antibiotic resistance and evaluates new anti-biofilm strategies and combination therapy experimentally and clinically to achieve more effective strategies for the prevention and treatment of these resistant infections, especially in veterinary medicine.
1. Alav I, et al. Structure, assembly, and function of tripartite efflux and type 1 secretion systems in Gram-negative bacteria. Chem. Rev. 2021;121:5479–5596. doi: 10.1021/acs.chemrev.1c00055.
2. Angeletti S, Cella E, Prosperi M, Spoto S, Fogolari M, De Florio L, Antonelli F, Dedej E, De Flora C, Ferraro E, Incalzi RA, Coppola R, Dicuonzo G, Francescato F, Pascarella S, Ciccozzi M. Multi-drug resistant Pseudomonas aeruginosa nosocomial strains: Molecular epidemiology and evolution. Microb Pathog. 2018 Oct;123:233-241 .
3. Barnard N., Foster A. Pseudomonas otitis in dogs: A general practitioner’s guide to treatment. Practice. 2017;39:386–398. doi: 10.1136/inp.j892 .
4. Bassetti M., Vena A., Russo A., Croxatto A., Calandra T., Guery B. Rational approach in the management of Pseudomonas aeruginosa infections. Curr. Opin. Infect. Dis. 2018;31:578–586. doi: 10.1097/QCO.0000000000000505.
5. Blomquist KC, Nix DE. A critical evaluation of newer beta-lactam antibiotics for treatment of Pseudomonas aeruginosa infections. Ann. Pharmacother. 2021;55:1010–1024. doi: 10.1177/1060028020974003.
6. Cendra MDM, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol. Adv. 2021;49:107734. doi: 10.1016/j.biotechadv.2021.107734.
7. Crone S., Vives-Flórez M., Kvich L., Saunders A.M., Malone M., Nicolaisen M.H., Martínez-García E., Rojas-Acosta C., Catalina Gomez-Puerto M., Calum H. The environmental occurrence of Pseudomonas aeruginosa. APMIS. 2020;128:220–231. doi: 10.1111/apm.13010.
8. Dégi J, Moțco OA, Dégi DM, Suici T, Mareș M, Imre K, Cristina RT. Antibiotic Susceptibility Profile of Pseudomonas aeruginosa Canine Isolates from a Multicentric Study in Romania. Antibiotics (Basel). 2021 Jul 12;10(7):846. doi: 10.3390/antibiotics10070846. PMID: 34356767; PMCID: PMC8300837.
9. Dolatshah L, Tabatabaei M. A phenotypic and molecular investigation of biofilm formation in clinical samples of Pseudomonas aeruginosa. Mol Biol Res Commun. 2021 Dec;10(4):157-163. doi: 10.22099/mbrc.2021.41708.1673. PMID: 35097137; PMCID: PMC8798273.
10. Ertugrul B., Oryasin E., Lipsky B.A., Willke A., Bozdogan B. Virulence genes fliC, toxA and phzS are common among Pseudomonas aeruginosa isolates from diabetic foot infections. Infect. Dis. 2017;50:273–279. doi: 10.1080/23744235.2017.1393839.
11. Freeman SL, Ashton NM, Elce YA, Hammond A, Hollis AR, Quinn G. BEVA primary care clinical guidelines: Wound management in the horse. Equine Vet J. 2021 Jan;53(1):18-29. doi: 10.1111/evj.13289. Epub 2020 Jul 17. PMID: 32463930.
12. Ghadaksaz A., Fooladi A.A.I., Hosseini H.M., Amin M. The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J. Appl. Biomed. 2015;13:61–68. doi: 10.1016/j.jab.2014.05.002.
13. Glen KA, Lamont IL. Characterization of acquired β-lactamases in Pseudomonas aeruginosa and quantification of their contributions to resistance. Microbiol Spectr. 2024 Oct 3;12(10):e0069424. doi: 10.1128/spectrum.00694-24. Epub 2024 Sep 9. PMID: 39248479; PMCID: PMC11448201.
14. Glen KA, Lamont IL. β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens. 2021 Dec 18;10(12):1638. doi: 10.3390/pathogens10121638. PMID: 34959593; PMCID: PMC8706265.
15. Haidar G, Philips NJ, Shields RK, Snyder D, Cheng S, Potoski BA, et al. Ceftolozane-tazobactam for the treatment of multidrug-resistant pseudomonas aeruginosa infections: clinical effectiveness and evolution of resistance. Clin Infect Dis. 2017;65(1):110–120. doi: 10.1093/cid/cix182.
16. Heald R, Salyer S, Ham K, Wilgus TA, Subramaniam VV, Prakash S. Electroceutical treatment of infected chronic wounds in a dog and a cat. Vet Surg. 2022 Apr;51(3):520-527. doi: 10.1111/vsu.13758. Epub 2022 Jan 7. PMID: 34994470; PMCID: PMC8986559.
17. Karash S, Nordell R, Ozer EA, Yahr TL. Genome sequences of two Pseudomonas aeruginosa isolates with defects in type III secretion system gene expression from a chronic ankle wound infection. Microbiol. Spectr. 2021;9:e0034021. doi: 10.1128/Spectrum.00340-21.
18. Liu W, Sun T, Wang Y. Integrin alphavbeta6 mediates epithelial-mesenchymal transition in human bronchial epithelial cells induced by lipopolysaccharides of Pseudomonas aeruginosa via TGF-beta1-Smad2/3 signaling pathway. Folia Microbiol. 2020;65:329–338. doi: 10.1007/s12223-019-00728-w.
19. Lund-Palau H, Turnbull AR, Bush A, Bardin E, Cameron L, Soren O, Wierre-Gore N, Alton EW, Bundy JG, Connett G, Faust SN, Filloux A, Freemont P, Jones A, Khoo V, Morales S, Murphy R, Pabary R, Simbo A, Schelenz S, Takats Z, Webb J, Williams HD, Davies JC. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Rev Respir Med. 2016 Jun;10(6):685-97.
20. Lux CN. Wound healing in animals: a review of physiology and clinical evaluation. Vet Dermatol. 2022 Feb;33(1):91-e27. doi: 10.1111/vde.13032. Epub 2021 Oct 26. PMID: 34704298.
21. Mack AR, Hujer AM, Mojica MF, Taracila MA, Feldgarden M, Haft DH, Klimke W, Prasad AB, Bonomo RA. β-Lactamase diversity in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2025 Mar 5;69(3):e0078524. doi: 10.1128/aac.00785-24. Epub 2025 Feb 10. PMID: 39927781; PMCID: PMC11881563.
22. Mickelson MA, Mans C, Colopy SA. Principles of Wound Management and Wound Healing in Exotic Pets. Vet Clin North Am Exot Anim Pract. 2016 Jan;19(1):33-53. doi: 10.1016/j.cvex.2015.08.002. PMID: 26611923; PMCID: PMC4663678.
23. Milivojevic D., Šumonja N., Medić S., Pavic A., Moric I., Vasiljevic B., Senerovic L., Nikodinovic-Runic J. Biofilm-forming ability and infection potential of Pseudomonas aeruginosa strains isolated from animals and humans. Pathog. Dis. 2018;76:1–14. doi: 10.1093/femspd/fty041.
24. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019 Jan-Feb;37(1):177-192.
25. Price ER, McDermott D, Sherman A, Kelley L, Mehr J, Greeley R, Cole SD. Canine Multidrug-Resistant Pseudomonas aeruginosa Cases Linked to Human Artificial Tears-Related Outbreak. Emerg Infect Dis. 2024 Dec;30(12):2689-2691. doi: 10.3201/eid3012.240085. PMID: 39592398; PMCID: PMC11616642.
26. Pye C.C., Yu A.A., Weese J.S. Evaluation of biofilm production by Pseudomonas aeruginosa from canine ears and the impact of biofilm on antimicrobial susceptibility in vitro. Vet. Dermatol. 2013;24:446–449. doi: 10.1111/vde.12040.
27. Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022 Jun 25;7(1):199. doi: 10.1038/s41392-022-01056-1. PMID: 35752612; PMCID: PMC9233671.
28. Rossi E, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2021;19:331–342. doi: 10.1038/s41579-020-00477-5.
29. Samad A., Khan A.A., Sajid M., Zahra R. Assessment of biofilm formation by Pseudomonas aeruginosa and hydrodynamic evaluation of microtiter plate assay. J. Pak. Med Assoc. 2019;69:666–671.
30. Sartorio MG, Pardue EJ, Feldman MF, Haurat MF. Bacterial outer membrane vesicles: from discovery to applications. Annu Rev. Microbiol. 2021;75:609–630. doi: 10.1146/annurev-micro-052821-031444.
31. Sid Ahmed MA, Khan FA, Sultan AA, Söderquist B, Ibrahim EB, Jass J, Omrani AS. β-lactamase-mediated resistance in MDR-Pseudomonas aeruginosa from Qatar. Antimicrob Resist Infect Control. 2020 Nov 1;9(1):170. doi: 10.1186/s13756-020-00838-y. PMID: 33131487; PMCID: PMC7603671.
32. Sievert D.M., Ricks P., Edwards J.R., Schneider A., Patel J., Srinivasan A., Kallen A., Limbago B., Fridkin S. Antimicrobial-resistant pathogens associated with healthcare-associated infections summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect. Control Hosp. Epidemiol. 2013;34:1–14. doi: 10.1086/668770.
33. Sharma D., Pakravanm N., Pritchard J.C., Hartmann F.A., Young K.M. Mucoid Pseudomonas aeruginosa infection in a cat with severe chronic rhinosinusitis. Vet. Clin. Pathol. 2019;48:300–304. doi: 10.1111/vcp.12749.
34. Tang P, et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat. Med. 2021;27:2136–2143. doi: 10.1038/s41591-021-01583-4.
35. van der Pol L, Stork M, van der Ley P. Outer membrane vesicles as platform vaccine technology. Biotechnol. J. 2015;10:1689–1706. doi: 10.1002/biot.201400395.
36. Vidaillac C, Chotirmall SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Rev. Respir. Med. 2021;15:649–662. doi: 10.1080/17476348.2021.1906225.
37. Wijesinghe G., Dilhari A., Gayani B., Kottegoda N., Samaranayake L., Weerasekera M. Influence of laboratory culture media on in vitro growth, adhesion, and biofilm formation of Pseudomonas aeruginosa and staphylococcus aureus. Med. Princ. Pract. 2018;28:28–35. doi: 10.1159/000494757.
38. Wilson MG, Pandey S. Pseudomonas aeruginosa. [Updated 2023 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557831.
39. Wolska K., Kot B., Mioduszewska H., Sempruch C., Borkowska L., Rymuza K. Occurrence of the nan1 gene and adhesion of Pseudomonas aeruginosa isolates to human buccal epithelial cells. Biol. Lett. 2012;49:59–64. doi: 10.2478/v10120-012-0011-6.
40. Yezli S, Shibl AM, Memish ZA. The molecular basis of beta-lactamase production in Gram-negative bacteria from Saudi Arabia. J Med Microbiol. 2015;64(Pt 2):127–136. doi: 10.1099/jmm.0.077834-0.
41. Zhao F, Wang Q, Zhang Y, Lei L. Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: performance, mechanism and its application potential for enhanced oil recovery. Micro. Cell Fact. 2021;20:103. doi: 10.1186/s12934-021-01593-4.
42. Zowawi HM, Syrmis MW, Kidd TJ, Balkhy HH, Walsh TR, Al Johani SM, et al. Identification of carbapenem-resistant Pseudomonas aeruginosa in selected hospitals of the Gulf Cooperation Council States: dominance of high-risk clones in the region. J Med Microbiol. 2018;67(6):846–853. doi: 10.1099/jmm.0.000730.
