Subject Areas : International Journal of Data Envelopment Analysis
Hanie Saleh Tabari
1
,
Mousa Nazari
2
,
Mohammad M. AlyanNezhadi
3
,
Hesamoddin Pourrostami
4
,
Seyyed Mohammad R. Hashemi
5
1 -
2 -
3 - Department of Computer Science, University of Science and Technology of Mazandaran, Behshahr, Iran
4 -
5 - Department of computer engineering, Shahrood university of technology, Shahrood, Iran.
Keywords:
Abstract :
[1] Khusro, S., Ali, Z., & Ullah, I. (2016). Recommender systems: Issues, challenges, and research opportunities. In Information Science and Applications (ICISA) 2016 (pp. 1179–1189). Springer.
[2] Eirinaki, M., Gao, J., Varlamis, I., & Tserpes, K. (2018). Recommender systems for large-scale social networks: A review of challenges and solutions. Information Sciences, 78, 413–418. Elsevier.
[3] Peška, L., Tashu, T. M., & Horváth, T. (2019). Swarm intelligence techniques in recommender systems—A review of recent research. Swarm and Evolutionary Computation, 48, 201–219.
[4] Nilashi, M., Ibrahim, O., & Bagherifard, K. (2018). A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques. Expert Systems with Applications, 92, 507–520.
[5] Pancholi, D., & Selvi, C. (2023). Study of cold-start product recommendations and its solutions. In International Conference on Data Management, Analytics & Innovation (pp. 45–58). Springer.
[6] Panteli, A., & Boutsinas, B. (2023). Addressing the cold-start problem in recommender systems based on frequent patterns. Algorithms, 16(4), 182.
[7] Tsikrika, T., Symeonidis, S., Gialampoukidis, I., Satsiou, A., Vrochidis, S., & Kompatsiaris, I. (2018). A hybrid recommendation system based on density-based clustering. In Internet Science: INSCI 2017 International Workshops, IFIN, DATA ECONOMY, DSI, and CONVERSATIONS (pp. 49–57). Springer.
[8] Hao, B., Yin, H., Zhang, J., Li, C., & Chen, H. (2023). A multi-strategy-based pre-training method for cold-start recommendation. ACM Transactions on Information Systems, 42, 1–24. https://doi.org/10.1002/int.23011
[9] Rahman, M. M., Sifat, F. F., Islam, R., Molla, S., & Khan, M. R. K. (2024). Hybrid recommendation systems using adaptive clustering to address cold-start problems. In 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET) (pp. 1–6). IEEE.
[10] Tanwar, A., & Vishwakarma, D. K. (2023). A deep neural network-based hybrid recommender system with user-user networks. Multimedia Tools and Applications, 82(10), 15613–15633.
[11] Alizadeh, S. H. (2018). A hybrid recommender system using multi-layer perceptron neural network. In 2018 8th Conference of AI & Robotics and 10th RoboCup IranOpen International Symposium (IRANOPEN) (pp. 7–13). IEEE.
[12] Tahmasebi, F., Meghdadi, M., Ahmadian, S., & Valiallahi, K. (2021). A hybrid recommendation system based on profile expansion technique to alleviate cold start problem. Multimedia Tools and Applications, 80, 2339–2354.
[13] Şeref, B., Bostanci, G. E., & Güzel, M. S. (2021). Evolutionary neural networks for improving the prediction performance of recommender systems. Turkish Journal of Electrical Engineering and Computer Sciences, 29(1), 62–77.
[14] Duan, L., Wang, W., & Han, B. (2021). A hybrid recommendation system based on fuzzy c-means clustering and supervised learning. KSII Transactions on Internet and Information Systems (TIIS), 15(7), 2399–2413.
[15] Chen, J., Zhao, C., Uliji, & Chen, L. (2020). Collaborative filtering recommendation algorithm based on user correlation and evolutionary clustering. Complex & Intelligent Systems, 6, 147–156.
[16] Bahramian, Z., Abbaspour, R. A., & Claramunt, C. (2017). A cold start context-aware recommender system for tour planning using artificial neural network and case-based reasoning. Mobile Information Systems, 2017, Article 2017.
[17] Camacho, L. A. G., & Alves-Souza, S. N. (2018). Social network data to alleviate cold-start in recommender system: A systematic review. Information Processing & Management, 54(4), 529–544.
[18] Sedhain, S., Menon, A., Sanner, S., Xie, L., & Braziunas, D. (2017). Low-rank linear cold-start recommendation from social data. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 31, No. 1).
[19] Hernando, A., Bobadilla, J., Ortega, F., & Gutiérrez, A. (2017). A probabilistic model for recommending to new cold-start non-registered users. Information Sciences, 376, 216–232.