Multi-Level Clustering Approach for Customer Behavior Analysis in Data-Driven Marketing
Subject Areas : International Journal of Finance, Accounting and Economics StudiesReyhane Farshbaf Sabahi 1 , firozeh razavi 2 , helia esmaili 3 , Ershad Estedadi 4
1 -
2 -
3 - Department of Business Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
4 - Director General / Ministry of Culture and Islamic Guidance
Keywords: Multi-Level Clustering, Data-Driven Marketing, Machine Learning, K-means Clustering,
Abstract :
The current study presents a comprehensive multi-level clustering model to investigate customer behavior in the context of data-driven marketing. Utilize the abundantly available Online Retail dataset, the study initiates by using RFM (Recency, Frequency, Monetary) analysis to extract prevalent behavioral characteristics. Subsequently, two prominent clustering models, namely K-Means and Gaussian Mixture Model (GMM), are used to segment customers. To further enhance the clustering outcome, secondary clustering methods like DBSCAN and Agglomerative Clustering are applied to the preliminary output of K-Means and GMM. Silhouette Score and Davies-Bouldin Index are used to measure the performance of every clustering configuration and through it, it is proved that the K-Means and DBSCAN combination provides the best segmentation performance. The results offer valuable insights for marketers to better understand and classify customer behavior patterns, as well as future research opportunities with more heterogeneous data sources and some new hybrid methods.
Afzal, A., Khan, L., Hussain, M. Z., Hasan, M. Z., Mustafa, M., & Khalid, A. (2024, April 5–7). Customer segmentation using hierarchical clustering. In 2024 IEEE 9th International Conference for Convergence in Technology (I2CT) IEEE. https://doi.org/10.1109/I2CT61223.2024.10543349
Allil, K. (2024). Integrating AI-driven marketing analytics techniques into the classroom: Pedagogical strategies for enhancing student engagement and future business success. Journal of Marketing Analytics, 12, 142–168. https://doi.org/10.1057/s41270-023-00195-z
Amato, A., Osterrieder, J. R., & Machado, M. R. (2024). How can artificial intelligence help customer intelligence for credit portfolio management? A systematic literature review. International Journal of Information Management Data Insights, 4(2), 100234. https://doi.org/10.1016/j.jjimei.2024.100234
Balbi, E., Cianfarra, P., Crispini, L., Tosi, S., & Ferretti, G. (2024). Hierarchical-agglomerative clustering analysis of geomorphic features applied to tectonic investigation of terrestrial planets: An example from Claritas Fossae, Mars. Icarus, 420, 116197. https://doi.org/10.1016/j.icarus.2024.116197
Benatti, A., & Costa, L. da F. (2024). Agglomerative clustering in uniform and proportional feature spaces. arXiv. https://doi.org/10.48550/arXiv.2407.08604
Hafeezallah, A., Al-Dhamari, A., & Abu-Bakar, S. A. R. (2024). Motion segmentation using Ward’s hierarchical agglomerative clustering for crowd disaster risk mitigation. International Journal of Disaster Risk Reduction, 102, 104262. https://doi.org/10.1016/j.ijdrr.2024.104262
Hajihosseinlou, M., Maghsoudi, A., & Ghezelbash, R. (2024). A comprehensive evaluation of OPTICS, GMM and K-means clustering methodologies for geochemical anomaly detection connected with sample catchment basins. Geochemistry, 84(2), 126094. https://doi.org/10.1016/j.chemer.2024.126094
Huang, K., Song, M., Ba, S., An, L., Liang, H., Deng, H., Liu, Y., Zhang, Z., & Zhou, C. (2025). Unsupervised waste classification by dual-encoder contrastive learning and multi-clustering voting (DECMCV). arXiv. https://doi.org/10.48550/arXiv.2503.02241
Krishnan, S. K., Ponnusamy, K., & Sharma, K. (2025). Architecting for success: Designing robust data infrastructures to power data-driven marketing campaigns. In Data engineering for data-driven marketing. Emerald Publishing. ISBN: 978-1-83662-327-4
Kumar, S. S., Ahmed, S. T., Fathima, A. S., Mathivanan, S. K., Jayagopal, P., Saif, A., Gupta, S. K., & Sinha, G. (2024). iLIAC: An approach of identifying dissimilar groups on unstructured numerical image dataset using improved agglomerative clustering technique. Multimedia Tools and Applications, 83, 86359–86381. https://doi.org/10.1007/s11042-024-13656-9
Li, D., & Hu, S. (2024). Adaptive large-scale group interactive portfolio optimization approach based on social network with multi-clustering analysis and minimum adjustment. Engineering Applications of Artificial Intelligence, 133(Part D), 108403. https://doi.org/10.1016/j.engappai.2024.108403
Mahmudunnobe, M., Hasan, P., Raja, M., Saifuddin, M., & Hasan, S. N. (2024). Using GMM in open cluster membership: An insight. Astronomy and Computing, 46, 100792. https://doi.org/10.1016/j.ascom.2024.100792
Nallakaruppan, M. K., Benedetto, F., & Jain, M. (2025). Harnessing AI and ML for marketing: Integrating advanced analytics into data-driven strategies. In Data engineering for data-driven marketing. Emerald Publishing. ISBN: 978-1-83662-327-4
Nguyen, T. T., Ho, T. C., Bui, H. T. T., Tran, V.-K., & Nguyen, T. T. (2024). Multi-clustering study on the association between human leukocyte antigen-DP-DQ and hepatitis B virus-related hepatocellular carcinoma and cirrhosis in Viet Nam. World Journal of Gastroenterology, 30(46), 4880–4903. https://doi.org/10.3748/wjg.v30.i46.4880
Sarkar, M., Roy Puja, A., & Chowdhury, F. R. (2024). Optimizing marketing strategies with RFM method and K-means clustering-based AI customer segmentation analysis. Journal of Business and Management Studies, 6(2). https://doi.org/10.32996/jbms.2024.6.2.5
Saxena, A., Agarwal, A., Pandey, B. K., & Pandey, D. (2024). Examination of the criticality of customer segmentation using unsupervised learning methods. Circular Economy and Sustainability, 4, 1447–1460. https://doi.org/10.1007/s43615-023-00389-z
Setiadi, D. R. I. M., Muslikh, A. R., Iriananda, S. W., Warto, W., Gondohanindijo, J., & Ojugo, A. A. (2024). Outlier detection using Gaussian mixture model clustering to optimize XGBoost for credit approval prediction. Journal of Computing Theories and Applications, 2(2), 244–255. https://doi.org/10.62411/jcta.11638
Trivedi, S., Grover, V., & Balusamy, B. (2025). Exploring AI in data-driven marketing: Understanding the intersection of data engineering and marketing. In Data engineering for data-driven marketing. Emerald Publishing. ISBN: 978-1-83662-327-4
Wasilewski, A. (2024). Customer segmentation in e-commerce: A context-aware quality model for comparing clustering algorithms. Journal of Internet Services and Applications, 15(1). https://doi.org/10.5753/jisa.2024.3851
Yu, B., Liang, J., & Ju, J. W. W. (2024). Damage evolution analysis of concrete based on multi-feature acoustic emission and Gaussian mixture model clustering. International Journal of Damage Mechanics, 33(6). https://doi.org/10.1177/10567895241235581
Yu, G., Ren, L., Wang, J., Domeniconi, C., & Zhang, X. (2024). Multiple clusterings: Recent advances and perspectives. Computer Science Review, 52, 100621. https://doi.org/10.1016/j.cosrev.2024.100621