Examining the Leptokurtic Property in Stephen Kou Pricing Modeling Based on Variance Reduction Method - Monte Carlo Simulation
Subject Areas : Financial Economics
Kianoush Fathi vajargah
1
,
Hossein Eslami Mofid Abadi
2
1 - Department of Statistics Islamic Azad University, North branch Tehran, Iran
2 -
Keywords: Kou Model, Barrier Option, Monte Carlo Simulation, Leptokurtic Property.,
Abstract :
The asymmetric characteristics of the leptokurtic distribution are skewed to one side and have a tall peak and heavy tails compared to the normal distribution, as empirically observed. The Black-Scholes model utilizes Brownian motion for option pricing; however, data from financial markets exhibit jumps in prices, stochastic volatility, and skewness compared to the normal distribution. To improve the performance of Black-Scholes, jumps need to be incorporated into asset pricing models. One of the research issues in the financial world is the pricing and hedging of options. In this research, the model of jump sizes with a double-exponential distribution by Stephen Kou is employed. Additionally, the Stephen Kou model is capable of generating the leptokurtic characteristics of the return distribution and sudden jump observations in option prices. Monte Carlo simulation is also a widely used tool for option pricing. However, its effectiveness is heavily dependent on the use of successful variance reduction techniques. In this paper, barrier options are utilized. Furthermore, a control variate method is employed for variance reduction. Therefore, this research investigates the role of changing the amounts of barrier options based on the leptokurtic characteristics in the model. Consequently, the results indicate that increasing the level of barrier options leads to an increase in options prices. Additionally, the results show that raising the level of barrier options has a significant impact on reducing variance.
ربیعی فرد، لیلا، و پورطاهری، رضا. (1395). قیمت گذاری اختیارات آمریکایی تحت مدل کو با استفاده از روش مونت کارلو. همایش ریاضیات و علوم انسانی. SID. https://sid.ir/paper/883821/fa
سلامی، امیر بهداد. (1382). مروری بر روش شبیه سازی مونت کارلو. پژوهشنامه اقتصادی،3(8)،117-138. https://joer.atu.ac.ir/article_3457.html
غلامی، غلامحسین؛ میترابی، آرش؛ (1391). روشهای کاهش واریانس در روش مونتکارلو، سومین کنفرانس ریاضیات مالی و کاربردها، بهمن1391، دانشگاه سمنان، ایران،(3)، 14-1. https://sid.ir/paper/503925/fa
نوذر پور، محمود؛ کیقبادی، امیررضا. (1400). مدل سازی قیمتگذاری توزیع اطلاعات بر مبنای محدودیت تأمین مالی، استراتژی تجاری و راهبری شرکتی با رویکرد معادلات ساختاری پژوهش های حسابداری مالی و حسابرسی،13(51)،187-214.
Abbaspour, M., Vajargah, K. F., & Azhdari, P. (2023). An efficient algorithm for pricing reinsurance contract under the regime-switching model. Mathematics and Computers in Simulation, 211, 278-300. https://doi.org/10.1016/j.matcom.2023.04.018
Augustyniak, M., Badescu, A., Bégin, J. F., & Jayaraman, S. K. (2025). A general option pricing framework for affine fractionally integrated models. Journal of Banking & Finance, 171, 107346. https://doi.org/10.1016/j.jbankfin.2024.107346
Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3), 637–654. http://www.jstor.org/stable/1831029
Burger, P., & Kliaras, M. (2013). Jump diffusion models for option pricing vs. the black scholes model. University of Applied Sciences bfi Vienna, 81, 1-73.
Carr, P., & Madan, D. B. (1999). Option pricing using the fast Fourier transform. Journal of Computational Finance, 2(4), 61-73.
Chen, M., Shao, Q. and Ibrahim, J. (2000). Monte Carlo Methods in Bayesian Computation. Springer-Verlag, New York.
Cont, R., & Tankov, P. (2004). "Financial Modelling with Jump Processes." Chapman & Hall/CRC. https://doi.org/10.1201/9780203485217
Ding, Z., & Granger, C. W. (1996). Modeling volatility persistence of speculative returns: a new approach. Journal of econometrics, 73(1), 185-215. https://doi.org/10.1016/0304-4076(95)01737-2
Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of empirical finance, 1(1), 83-106. https://doi.org/10.1016/0927-5398(93)90006-D
Fathi Vajargah, K., & Eslami Mofidabadi, H. (2022). Comparison of Stochastic Sampling and Application in Financial Mathematics: Evidence from the European-Asian Option Markets. International Journal of Finance, Accounting and Economics Studies, 3(1),35-44. https://sanad.iau.ir/fa/Article/805217
Fathi Vajargah, K., Eslami Mofid Abadi, H., & Abbasi, E. (2021). Oil Price estimating Under Dynamic Economic Models Using Markov Chain Monte Carlo Simulation Approach. Advances in Mathematical Finance and Applications, 6(3), 631-651. https://doi.org/10.22034/amfa.2020.1902265.1446
Gelfand, A. E., & Dey, D. K. (1994). Bayesian model choice: asymptotics and exact calculations. Journal of the Royal Statistical Society: Series B (Methodological), 56(3), 501-514.
Gilli, M., Maringer, D., Schumann, E., (2019). Chapter 17 - Calibrating option pricing models, Numerical Methods and Optimization in Finance (Second edition), 551-596. https://doi.org/10.1016/B978-0-12-815065-8.00029-7
Gregson, A. (2012). Pricing strategies for small business. Self-Counsel Press. ISBN 978-1-55180-979-3
Kamalzadeh, F., Farnoosh, R., & Fathi, K. (2020). A numerical method for pricing discrete double barrier option by Chebyshev polynomials. Mathematical Sciences, 14, 91-96. https://doi.org/10.1007/s40096-020-00319-8
Kianoush, F., & Masoomehni, K. (2015). Application REML model and determining cut off of ICC by multi-level model based on Markov Chains simulation in health. Indian Journal of Fundamental and Applied Life Sciences, 5, 1432-48.
Kou, S. G. (2002). "A jump-diffusion model for option pricing." Management Science, 48(8), 1086-1101.
Kou, S. G., & Wang, H. (2004). Option pricing under a double exponential jump diffusion model. Management science, 50(9), 1178-1192.
Mehrdoust, F., & Vajargah, K. F. (2012). A computational approach to financial option pricing using Quasi Monte Carlo methods via variance reduction techniques.Journal of Mathematical Finance, Vol.2 No.2(2012), Article ID:19218,4 pages DOI:10.4236/jmf.2012.22021
Mehrdoust, F., Fathi, K., & Rahimi, A. A. (2013). Numerical simulation for multi-asset derivatives pricing under black-scholes model. Chiang Mai Journal of Science, 40, 725-735.
Mehrdoust, F., Fathi, K., & Rahimi, A. A. (2013). Numerical simulation for multi-asset derivatives pricing under black-scholes model. Chiang Mai Journal of Science, 40, 725-735. http://it.science.cmu.ac.th/ejournal/
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1-2), 125-144.
Mottaghi Golshan, H., & Arjomandfar, A. (2023). Optimization of estimates and comparison of their efficiency under stochastic methods and its application in financial models. Advances in Mathematical Finance and Applications, 4(3), 935 - 949. https://doi.org/10.22034/amfa.2022.1943236.1664
Newton, M. and Raftery, A. (1994). Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion). Journal of the Royal Statistical Society Series B: Statistical Methodology, 56(1), 3-26. https://doi.org/10.1111/j.2517-6161.1994.tb01956.x
Robert, C. and Casella, G. (2004). Monte Carlo Sta-tistical Methods. 2nd ed. Springer-Verlag, New York.
Rubinstein, R.Y. (1981) Simulation and the Monte Carlo Method. John Wiley & Sons, New York, NY, 6-12. https://doi.org/10.1002/9780470316511
Rue, H., Martino, S., & Chopin, N. (2008). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society Series B: Statistical Methodology, 71(2), 319-392.
Taylor, S. J. (2008). Modelling financial time series. world scientific. https://books.google.com/books?hl=en&lr=&id=KQ5pDQAAQBAJ&oi
Vajargah, B. F., & Vajargah, K. F. (2005). Parallel Monte Carlo methods with compressed data for solving Linear systems. International Journal of Applied Mathematics, 17(2), 127.
Vajargah, B. F., & Vajargah, K. F. (2006). Parallel Monte Carlo computations for solving SLAE with minimum communications. Applied mathematics and computation, 183(1), 1-9. https://doi.org/10.1016/j.amc.2006.02.058
Vajargah, B. F., & Vajargah, K. F. (2007). Monte Carlo method for finding the solution of Dirichlet partial differential equations. Applied Mathematical Sciences, 1(10), 453-462.
Vajargah, K. F., Benis, S. G., & Golshan, H. M. (2021). Detection of the quality of vital signals by the Monte Carlo Markov Chain (MCMC) method and noise deleting. Health Information Science and Systems, 9, 1-10. https://doi.org/10.1007/s13755-021-00157-5
Vajargah, K. F., Mehrdoust, F., & Kamalzadeh, F. (2012). Variance Estimation of Linear Regression Coefficients Using Markov Chain Monte Carlo Simulation. International Journal of Nonlinear Science, 13(4), 396-400.
Vajargah, K. F., Mehrdoust, F., & Kamalzadeh, F. (2012). Variance estimation of linear regression coefficients using Markov chain Monte Carlo simulation. Middle East Journal of Scientific Research, 11(9), 1317-1322. https://doi.org/10.5829/idosi.mejsr.2012.11.09.1537
Vajargah, K.F. (2013). Comparing ridge regression and principal components regression by monte carlo simulation basedon MSE. J. Comput. Sci. Comput. Math, 3, 25-29.