`Mutual Complexity' in Hyperscaling Violating Background
Subject Areas : International Journal of Mathematical Modelling & ComputationsNarjes Ghanbaryan Sani-Ghasem-Abad 1 , Mohammad Reza Tanhayi 2
1 -
2 -
Keywords: Mutual Complexity, Hyperscaling Violating Background, quantum information theory,
Abstract :
`Mutual Compl Additivity and subadditivity are cornerstone principles in information theory, describing how measures like entropy and channel capacities behave under combination. Additivity asserts f(A∪B)=f(A)+f(B), while subadditivity ensures f(A∪B)≤f(A)+f(B). These properties provide profound insights into data compression, error correction, and the design of communication systems, with results such as the strong subadditivity of entropy playing a vital role in both classical and quantum information theory.In this work, we explore the concept of 'mutual complexity' within hyperscaling violating backgrounds by employing the complexity equals action proposal. For two subregions, we determine the definite bulk action within each subregion, incorporating appropriate counterterms to describe holographic complexity. Our findings show that mutual complexity for two subregions exhibits subadditivity. Furthermore, we extend this framework to three subregions, introducing the notion of holographic 'tripartite complexity' and demonstrating that this new quantity exhibits superadditivity.
[1] J. M. Maldacena, "The large N limit of superconformal field theories and supergravity,"Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] arXiv:hepth9711200;S. S. Gubser, I. R. Klebanov and A. M. Polyakov, "Gauge theory correlators from non-critical string theory," Phys. Lett. B 428, 105 (1998) arXiv:hep-th9802109;
E. Witten, "Anti-de Sitter space and holography," Adv. Theor. Math. Phys. 2, 253 (1998)
arXiv:hep-th9802150.
[2] S. Ryu and T. Takayanagi, \Aspects of Holographic Entanglement Entropy," JHEP 0608,045 (2006) doi:10.1088/1126-6708/2006/08/045 [hep-th/0605073].
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,Phys. Rev. Lett. 96 (2006) 181602, [hep-th/0603001].
[3] L. Susskind, \Computational Complexity and Black Hole Horizons," Fortsch. Phys. 64,24-43 (2016) doi:10.1002/prop.201500092 [arXiv:1403.5695 [hep-th]].
[4] D. Stanford and L. Susskind, \Complexity and Shock Wave Geometries," Phys. Rev. D 90,no.12, 126007 (2014) doi:10.1103/PhysRevD.90.126007 [arXiv:1406.2678 [hep-th]].
[5] L. Susskind and Y. Zhao, \Switchbacks and the Bridge to Nowhere," [arXiv:1408.2823[hep-th]].
[6] L. Susskind, \Entanglement is not enough," Fortsch. Phys. 64, 49-71 (2016)
doi:10.1002/prop.201500095 [arXiv:1411.0690 [hep-th]].
[7] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, \HolographicComplexity Equals Bulk Action?," Phys. Rev. Lett. 116, no.19, 191301 (2016)
doi:10.1103/PhysRevLett.116.191301 [arXiv:1509.07876 [hep-th]].
[8] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle and Y. Zhao, \Complexity, action,and black holes," Phys. Rev. D 93, no.8, 086006 (2016) doi:10.1103/PhysRevD.93.086006[arXiv:1512.04993 [hep-th]].
[9] J. L. F. Barbon and E. Rabinovici, \Holographic complexity and spacetime singularities,"JHEP 01, 084 (2016) doi:10.1007/JHEP01(2016)084 [arXiv:1509.09291 [hep-th]].
[10] A. R. Brown, L. Susskind and Y. Zhao, \Quantum Complexity and Negative Curvature,"Phys. Rev. D 95, no.4, 045010 (2017) doi:10.1103/PhysRevD.95.045010 [arXiv:1608.02612[hep-th]].
[11] S. Chapman, H. Marrochio and R. C. Myers, \Complexity of Formation in Holography,"JHEP 01, 062 (2017) doi:10.1007/JHEP01(2017)062 [arXiv:1610.08063 [hep-th]].
[12] M. Alishahiha, K. BabaeiVelni and M. R. MohammadiMoza_ar, \Black holesubregion action and complexity," Phys. Rev. D 99, no. 12, 126016 (2019)doi:10.1103/PhysRevD.99.126016 [arXiv:1809.06031 [hep-th]].
[13] E. Caceres, S. Chapman, J. D. Couch, J. P. Hernandez, R. C. Myers and S. M. Ruan,\Complexity of Mixed States in QFT and Holography," JHEP 03, 012 (2020)doi:10.1007/JHEP03(2020)012 [arXiv:1909.10557 [hep-th]].
[14] J. Erdmenger and H. Osborn, “Conserved currents and the energy momentum tensor
inconformally invariant theories for general dimensions,” Nucl. Phys. B 483, 431
(1997) [hep-th/9605009].
[15] J. Bekenstein; Black holes and entropy, Phys.Rev. D7, 2333-2346, (1973).
[16] S. Hawking; Particle creation by black holes, Commun.Math.Phys. 43, 199-220, (1975).
[17] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N fieldtheories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [hep-th/9905111].