Properties, synthesis and characterization techniques of bimetallic nanoparticles
Subject Areas : Synthesis and Characterization of NanostructuresSara Sobhani 1 , Hamed Zarei 2
1 - Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
2 - Department of Chemistry, College of Sciences, Birjand University, Birjand. Iran.
Keywords: Bimetallic nanoparticles, Alloy, Synthesis, Characterization.,
Abstract :
Bimetallic nanoparticles, which are composed of two metallic elements, are a new class of nanomaterials. These materials exhibit different properties in terms of hardness, thermal and electrical conductivity, and flexibility compared to the corresponding pure bimetallic mixtures and monometallic alloys. The electrical, physical, and chemical properties of bimetallic nanoparticles are related to the type of metal used and its nature. Therefore, it is easy to prepare an optimized structure of bimetallic nanoparticles with superior properties and highly effective ability by optimizing conditions such as changing the ratio of metals, size, and shape of the particles. In recent decades, much research has been conducted in this field on the synthesis of bimetallic nanoparticles for specific applications. This article reviewed the properties, synthetic methods, and characterization techniques of bimetallic nanoparticles.
[1] Scott, D. A.; Schwab, R.; Scott, D. A.; Schwab, R. The Structure of Metals and Alloys. Metallography in Archaeology and Art 2019, 69-132.
[2] Kang, J.-Y.; Heo, Y.-U.; Kim, H.; Suh, D.-W.; Son, D.; Lee, D. H.; Lee, T.-H. Effect of copper addition on the characteristics of high-carbon and high-chromium steels. Materials Science and Engineering: A 2014; 614, 36-44.
[3] Nwaeju, C. C.; Edoziuno, F. O.; Adediran, A. A.; Nnuka, E. E.; Adesina, O. S. Structural and properties evolution of copper–nickel (Cu–Ni) alloys: a review of the effects of alloying materials. Matériaux & Techniques 2021; 109 (2), 204.
[4] Qi, W. Nanoscopic thermodynamics. Accounts of Chemical Research 2016; 49 (9), 1587-1595.
[5] Idris, D. S.; Roy, A. Synthesis of bimetallic nanoparticles and applications—an updated review. Crystals 2023; 13 (4), 637.
[6] Morriss, R.; Collins, L. Optical properties of multilayer colloids. The Journal of Chemical Physics 1964; 41 (11), 3357-3363.
[7] Sinfelt, J. H. Catalysis by alloys and bimetallic clusters. Accounts of Chemical Research 1977; 10 (1), 15-20.
[8] Fornalczyk, A. Industrial catalysts as a source of valuable metals. J. Achiev. Mater. Manuf. Eng 2012; 55 (2), 864-868.
[9] Park, K.-W.; Choi, J.-H.; Kwon, B.-K.; Lee, S.-A.; Sung, Y.-E.; Ha, H.-Y.; Hong, S.-A.; Kim, H.; Wieckowski, A. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. The Journal of Physical Chemistry B 2002; 106 (8), 1869-1877.
[10] Liu, X.; Wang, D.; Li, Y. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012; 7 (5), 448-466.
[11] Zhang, S.; Zhang, X.; Jiang, G.; Zhu, H.; Guo, S.; Su, D.; Lu, G.; Sun, S. Tuning nanoparticle structure and surface strain for catalysis optimization. Journal of the American Chemical Society 2014; 136 (21), 7734-7739.
[12] Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. Journal of the American chemical Society 2012; 134 (34), 13934-13937.
[13] Liu, S.; Li, Y.; Shen, W. Tuning the catalytic behavior of metal nanoparticles: The issue of the crystal phase. Chinese Journal of Catalysis 2015; 36 (9), 1409-1418.
[14] Zhao, M.; Xia, Y. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nature Reviews Materials 2020; 5 (6), 440-459.
[15] Gu, J.; Guo, Y.; Jiang, Y.-Y.; Zhu, W.; Xu, Y.-S.; Zhao, Z.-Q.; Liu, J.-X.; Li, W.-X.; Jin, C.-H.; Yan, C.-H. Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@ Ru nanotetrahedrons with superior hydrogen electro-oxidation activity. The Journal of Physical Chemistry C 2015; 119 (31), 17697-17706.
[16] Fan, Z.; Zhu, Y.; Huang, X.; Han, Y.; Wang, Q.; Liu, Q.; Huang, Y.; Gan, C. L.; Zhang, H. Synthesis of Ultrathin Face‐Centered‐Cubic Au@ Pt and Au@ Pd Core–Shell Nanoplates from Hexagonal‐Close‐Packed Au Square Sheets. Angewandte Chemie 2015; 127 (19), 5764-5768.
[17] Schönecker, S.; Li, X.; Richter, M.; Vitos, L. Lattice dynamics and metastability of fcc metals in the hcp structure and the crucial role of spin-orbit coupling in platinum. Physical Review B 2018; 97 (22), 224305.
[18] Zhou, M.; Li, C.; Fang, J. Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chemical Reviews 2020; 121 (2), 736-795.
[19] Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nature materials 2007; 6 (9), 692-697.
[20] Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical reviews 2008; 108 (3), 845-910.
[21] Christensen, A.; Stoltze, P.; Norskov, J. Size dependence of phase separation in small bimetallic clusters. Journal of Physics: Condensed Matter 1995; 7 (6), 1047.
[22] Waychunas, G. A. Structure, aggregation and characterization of nanoparticles. Reviews in Mineralogy and geochemistry 2001; 44 (1), 105-166.
[23] Cheng, H.-W.; Luo, J.; Zhong, C.-J. An aggregative growth process for controlling size, shape and composition of metal, alloy and core–shell nanoparticles toward desired bioapplications. Journal of Materials Chemistry B 2014; 2 (40), 6904-6916.
[24] Liu, L.; Corma, A. Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles. Chemical Reviews 2023; 123 (8), 4855-4933.
[25] Chen, W.; Kim, J.; Sun, S.; Chen, S. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid. Langmuir 2007; 23 (22), 11303-11310.
[26] Hosseini, M.; Barakat, T.; Cousin, R.; Aboukaïs, A.; Su, B.-L.; De Weireld, G.; Siffert, S. Catalytic performance of core–shell and alloy Pd–Au nanoparticles for total oxidation of VOC: The effect of metal deposition. Applied Catalysis B: Environmental 2012; 111, 218-224.
[27] Campbell, C. T. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Accounts of chemical Research 2013; 46(8), 1712-1719.
[28] Wang, X.; Li, N.; Webb, J. A.; Pfefferle, L. D.; Haller, G. L. Effect of surface oxygen containing groups on the catalytic activity of multi-walled carbon nanotube supported Pt catalyst. Applied Catalysis B: Environmental 2010; 101, 21-30.
[29] Camposeco, R.; Torres, A. E.; Zanella, R. Influence of the preparation method of Au, Pd, Pt, and Rh/TiO2 nanostructures and their catalytic activity on the CO oxidation at low temperature. Topics in Catalysis 2022; 65 (7), 798-816.
[30] Glazkova, E. A.; Bakina, O. V.; Lerner, M. I.; Pervikov, A. V. Synthesis and applications of bimetallic nanoparticles of immiscible elements. Recent patents on nanotechnology 2018; 12 (2), 132-142.
[31] Loza, K.; Heggen, M.; Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Advanced functional materials 2020; 30 (21), 1909260.
[32] Xiao, S.; Hu, W.; Luo, W.; Wu, Y.; Li, X.; Deng, H. Size effect on alloying ability and phase stability of immiscible bimetallic nanoparticles. The European Physical Journal B-Condensed Matter and Complex Systems 2006; 54, 479-484.
[33] Wanjala, B. N.; Luo, J.; Fang, B.; Mott, D.; Zhong, C.-J. Gold-platinum nanoparticles: alloying and phase segregation. Journal of Materials Chemistry 2011; 21 (12), 4012-4020.
[34] Zakharov, Y. A.; Popova, A. N.; Pugachev, V. M.; Zakharov, N. S.; Tikhonova, I. N.; Russakov, D. M.; Dodonov, V. G.; Yakubik, D. G.; Ivanova, N. V.; Sadykova, L. R. Morphology and Phase Compositions of FePt and CoPt Nanoparticles Enriched with Noble Metal. Materials 2023; 16 (23), 7312.
[35] Kaya, D.; Adanur, I.; Akyol, M.; Karadag, F.; Ekicibil, A. Synthesis of monodisperse CoPt nanoparticles: Structural and magnetic properties. Journal of Molecular Structure 2021; 1224, 128999.
[36] Liao, H.; Fisher, A.; Xu, Z. J. Surface segregation in bimetallic nanoparticles: a critical issue in electrocatalyst engineering. Small 2015; 11 (27), 3221-3246.
[37] Henning, A. M.; Watt, J.; Miedziak, P. J.; Cheong, S.; Santonastaso, M.; Song, M.; Takeda, Y.; Kirkland, A. I.; Taylor, S. H.; Tilley, R. D. Gold–palladium core–shell nanocrystals with size and shape control optimized for catalytic performance. Angewandte Chemie International Edition 2013; 52 (5), 1477-1480.
[38] Zhang, C.; Yin, A.-X.; Jiang, R.; Rong, J.; Dong, L.; Zhao, T.; Sun, L.-D.; Wang, J.; Chen, X.; Yan, C.-H. Time–Temperature indicator for perishable products based on kinetically programmable Ag overgrowth on Au nanorods. ACS nano 2013; 7 (5), 4561-4568.
[39] Zhang, Y.-W. Bimetallic nanostructures: shape-controlled synthesis for catalysis, plasmonics, and sensing applications; John Wiley & Sons, 2018.
[40] Zhang, L.; Zhang, J.; Kuang, Q.; Xie, S.; Jiang, Z.; Xie, Z.; Zheng, L. Cu2+-assisted synthesis of hexoctahedral Au–Pd alloy nanocrystals with high-index facets. Journal of the American Chemical Society 2011; 133 (43), 17114-17117.
[41] Zhang, L.; Niu, W.; Gao, W.; Qi, L.; Lai, J.; Zhao, J.; Xu, G. Synthesis of convex hexoctahedral palladium@ gold core–shell nanocrystals with {431} high-index facets with remarkable electrochemiluminescence activities. ACS nano 2014; 8 (6), 5953-5958.
[42] Kim, J.; Lee, Y.; Sun, S. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. Journal of the American Chemical Society 2010; 132 (14), 4996-4997.
[43] Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R. P.; ALOthman, Z. A.; Mola, G. T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. Journal of King Saud University-Science 2019; 31 (2), 257-269.
[44] Park, J.-I.; Kim, M. G.; Jun, Y.-w.; Lee, J. S.; Lee, W.-r.; Cheon, J. Characterization of superparamagnetic “core− shell” nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution” nanoalloys. Journal of the American Chemical Society 2004; 126 (29), 9072-9078.
[45] Wang, D.; Li, Y. Bimetallic Nanocrystals: Liquid-Phase Synthesis and Catalytic Applications. Advanced Materials 2011; 23 (9), 1044-1060.
[46] Gu, J.; Zhang, Y.-W.; Tao, F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chemical Society Reviews 2012; 41 (24), 8050-8065.
[47] Lehr, A. Multi Metallic Nano Alloys: Understanding the Structure and Properties of Nano Alloys. Northern Arizona University, 2023.
[48] Shan, S.; Luo, J.; Yang, L.; Zhong, C.-J. Nanoalloy catalysts: structural and catalytic properties. Catalysis Science & Technology 2014; 4 (10), 3570-3588.
[49] Lyman, C.; Lakis, R. E.; Stenger Jr, H. G.; Tøtdal, B.; Prestvik, R. Analysis of alloy nanoparticles. Microchimica Acta 2000; 132, 301-308.
[50] Coviello, V.; Forrer, D.; Amendola, V. Recent developments in plasmonic alloy nanoparticles: synthesis, modelling, properties and applications. ChemPhysChem 2022; 23 (21), e202200136.