Investigating carbon nitride nanostructures as anagrelide drug carrier using density functional theory
Subject Areas : Applications of Nanostructures
Ayob Ahmadi
1
,
Mahboobeh Salehpour
2
,
Zohreh Saadati
3
1 - Department of Chemistry, Om.C., Islamic Azad University, Omidiyeh, Iran.
2 - Department of Chemistry, Om.C., Islamic Azad University, Omidiyeh, Iran.
3 - Department of Chemistry, Om.C., Islamic Azad University, Omidiyeh, Iran.
Keywords: Anagrelide, Density functional theory, Graphitic carbon nitride, Nanocarrier, Drug delivery.,
Abstract :
The objective of this study was to investigate the interactions between the drug anagrelide and carbon nitride nanostructures g-C3N4 using density functional theory. All calculations were performed using the B3LYP functional with the 6-311+G(d,p) basis set in the Gaussian 09 software. Structural optimization was carried out on all initial g-C3N4:AG conformations and the adsorption energies (Eads) were calculated. Finally, three stable configurations of the g-C3N4:AG complex were obtained, with all vibrational modes exhibiting positive frequencies in each complex. The Eads values for complexes 1 to 3 are -0.16, -3.7 and -25.5 kcal.mol-1, respectively. The HOMO and LUMO energy levels, as well as the energy gap (Eg) of the studied structures, indicated that adsorption of AG on the g-C3N4 surface causes relatively high instability of the HOMO energy level and low stability of the LUMO energy level. NBO calculations showed that the partial charge of the atoms of the studied structures does not change significantly after the formation of the complexes and that there is negligible charge transfer between the nanostructure and the drug. The time required for the release of AG from g-C3N4 in complexes 1 to 3 is about 0.2 × 10-5 , 0.4 × 10-14 and 83 s, respectively. Therefore, considering the adsorption energy and electronic properties, the g-C3N4:AG-3 complex appears to be a promising candidate for AG drug delivery.
1. MG. Mazzucconi, R. Redi, S. Bernasconi, L. Bizzoni, F. Dragoni, R. Latagliata, C. Santoro, F. Mandelli. Haematologica. 89(11), 1306 (2004).
2. K. Toivanen, L. De Sutter, A. Wozniak, K. Wyns, N. Merikoski, S. Salmikangas, J. Duan, M. Maksimow, M. Lahtinen, T. Böhling, P. Schöffski. Drug Delivery. 32(1), 2463433 (2025).
3. M. Nishat, MR Hossain, MM Hasan, MK Hossain, MA Hossain, F Ahmed. Journal of Biomolecular Structure and Dynamics. 41(8), 3413 (2023).
4. O.O. Ltaief, I.B. Amor, H. Hemmami, W. Hamza, S. Zeghoud, A.B. Amor, M. Benzina, A.A. Alhamad. Annals of Medicine and Surgery. 86(8), 4541 (2024).
5. R. Fatima, P. Katiyar, K. Kushwaha. Frontiers in Nanotechnology. 7, 1564188 (2025).
6. H.D. Lawson, S.P. Walton, C. Chan. ACS applied materials & interfaces. 13(6), 7004 (2021).
7. A.N. Al-Thani, A.G. Jan, M. Abbas, M. Geetha, K.K. Sadasivuni. Life sciences. 122899 (2024).
8. A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan,. Nano-micro letters. 9, 1 (2017).
9. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, et al. Nature materials. 8(1), 76 (2009).
10. E.Z. Lee, Y.S. Jun, W.H. Hong, A. Thomas, M.M. Jin. Angewandte Chemie. 122(50), 9900 (2010).
11. C. Cheng, Y. Huang, J. Wang, B. Zheng, H. Yuan, D. Xiao. Analytical chemistry. 85(5), 2601 (2013).
12. X. Wang, X. Chen, A. Thomas, X. Fu, M. Antonietti. Advanced Materials. 21(16), 1609 (2009).
13. X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie. Journal of the American Chemical Society. 135(1), 18 (2013).
14. Z. Miao, G. Wu, Q. Wang, J. Yang, Z. Wang, P. Yan, P. Sun, Y. Lei, Z. Mo, H. Xu. Materials Reports: Energy. 3(4), 100235 (2023).
15. M. Caricato, M.J. Frisch, J. Hiscocks, M.J. Frisch. Gaussian 09: IOps Reference, Gaussian, (2009).
16. R. Dennington, T. Keith, J. Millam. GaussView, version 5. (2009).
17. N.M. O'boyle, A.L. Tenderholt, K.M. Langner. Journal of computational chemistry. 29(5), 839 (2008).