Nano drugs in modern Drug delivery : "advances , application and economic challenges"
Subject Areas :Kiyana Ghasemi Ghasemvand 1 , Atoosa Mohammadasgari 2
1 -
2 -
Keywords: Nanoparticles, Nano Drug, Drug delivery, Cancer , Nano medicine,
Abstract :
نانوتکنولوژی یک پیشرفت تأثیرگذار در تمام جنبههای علم، از فناوریهای مکانیکی گرفته تا پزشکی بوده است. یکی از این مزایا و تاثیرات، داروهای نانو است که با بهره گیری از فناوری نانو، تحولی چشمگیر در تشخیص و درمان سرطان ایجاد کرده است. این داروها با ویژگیهایی مانند نسبت سطح به حجم بالا، هدفگیری فعال و غیرفعال و پاسخدهی به محرکهای تومور، کارایی درمانی را افزایش داده و عوارض جانبی را کاهش میدهند. در این مقاله، قصد داشتم ابتدا اصول فیزیکوشیمیایی و مکانیسمهای عمل نانوذرات، از جمله اثر نفوذپذیری و حفظ افزایش یافته (EPR) و هدفگیری مولکولی را بررسی کنم. سپس نانوداروهای تایید شده بالینی مانند Doxil® و Abraxane® با جزئیات فنی مورد تجزیه و تحلیل قرار می گیرند. علاوه بر این، فناوریهای نوظهور مانند سیستمهای چند محرک هوشمند و ویرایش ژن مبتنی بر CRISPR-Cas9 مورد بحث قرار میگیرند.
چالشهای اقتصادی به همراه راهحلهای مهندسی شده ارائه میشوند و در نهایت، چشماندازهای آینده، از جمله ادغام هوش مصنوعی و توسعه سیستمهای ترانوستیک، تشریح میشوند. این مقاله مروری جامع از پیشرفتها در نانو داروهای سرطان، از اصول اولیه تا کاربردهای بالینی پیشرفته ارائه میکند.
1. International Organization for Standardization. ISO/TS 80004-2:2015 Nanotechnologies - Vocabulary - Part 2: Nano-objects. Geneva: ISO; 2015. 32 p.
2. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008 Dec;41(12):1578-86. doi:10.1021/ar7002804
3. Kovalenko MV, et al. Prospects of nanoscience with nanocrystals. *ACS Nano*. 2022;16(1):30-43. doi:10.1021/acsnano.1c06583
4. Laleh Y, Pourmahdian S, Tehranchi MM. Synthesis of gold nanoparticles for biomedical applications. In: Proceedings of the 5th Iranian Biotechnology Conference; 2005 Nov 12-14; Tehran, Iran. p. 45-50.
5. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012 Apr 7;41(7):2740-79. doi:10.1039/C1CS15237H
6. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012 Jul 20;161(2):505-22. doi:10.1016/j.jconrel.2012.01.043
7. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015 Dec 23;6:286. doi:10.3389/fphar.2015.00286
8. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016 Apr 1;99(Pt A):28-51. doi:10.1016/j.addr.2015.09.012
9. Pourfallah TA. Nanohyperthermia: principles and clinical applications. Razi J Med Sci. 2018;25(3):1-15.
10. Heldin CH, Rubin K, Pietras K, Östman A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer. 2004 Oct;4(10):806-13. doi:10.1038/nrc1456
11. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001 Mar 15;344(11):783-92. doi:10.1056/NEJM200103153441101
12. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697-715. doi:10.1146/annurev.cellbio.12.1.697
13. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017 Mar;16(3):181-202. doi:10.1038/nrd.2016.199
14.O'Brien MER, et al. Reduced cardiotoxicity with comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin. *Ann Oncol*. 2004;15(3):440-9. doi:10.1093/annonc/mdh097
15. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013 Nov;12(11):991-1003. doi:10.1038/nmat3776
16. Xu X, et al. Engineered nanocarriers for CRISPR-Cas9 genome editing. *Nat Rev Mater*. 2023;8(6):401-20. doi:10.1038/s41578-023-00558-w
17. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009 Feb;8(2):129-38. doi:10.1038/nrd2742
18. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013 Feb;8(2):137-43. doi:10.1038/nnano.2012.237
19. Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000 Oct 1;18(3-4):301-13. doi:10.1016/S0927-7765(99)00156-3
20. Valencia PM, Farokhzad OC, Karnik R, Langer R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol. 2012 May 20;7(10):623-9. doi:10.1038/nnano.2012.168
21. Barenholz Y. Doxil® - the first FDA-approved nano-drug: lessons learned. J Control Release. 2012 Dec 10;160(2):117-34. doi:10.1016/j.jconrel.2012.03.020
22. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):1317-24. doi:10.1158/1078-0432.CCR-05-1634
23. Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016 Feb 6;387(10018):545-57. doi:10.1016/S0140-6736(15)00986-1
24. Oberli MA, Reichmuth AM, Dorkin JR, Mitchell MJ, Fenton OS, Jaklenec A, et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017 Mar 8;17(3):1326-35. doi:10.1021/acs.nanolett.6b03329
25. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001 Jun 11;48(2-3):139-57. doi:10.1016/S0169-409X(01)00112-0
26. Popović Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, et al. A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed Engl. 2010 Oct 25;49(46):8649-52. doi:10.1002/anie.201003142
27. Lee ES, Na K, Bae YH. Super pH-sensitive multifunctional polymeric micelle. Nano Lett. 2005 Feb;5(2):325-9. doi:10.1021/nl0479987
28. Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008 Mar 1;60(12):1421-34. doi:10.1016/j.addr.2008.04.012
29. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 2008 Oct;3(5):703-17. doi:10.2217/17435889.3.5.703
30. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419-36. doi:10.2165/00003088-200342050-00002
31. Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012 Jun;14(2):282-95. doi:10.1208/s12248-012-9339-4
32. Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021 Dec;6(12):1078-94. doi:10.1038/s41578-021-00358-0
33. Borna News Agency. Annual report on cost-effectiveness of Iranian nanodrugs in insurance systems [Internet]. Tehran: Borna News; 2023 Mar 15 [cited 2025 Apr 1]. Available from: https://www.bornanews.ir/reports/nanodrugs2023
34. Iran Food and Drug Administration. Approval document of SinaDoxosome (Liposomal Doxorubicin). Tehran: FDA Iran; 2020. Report No.: IN-DF-2020-045.
35. Mehrali M. [Personal interview on molecular targeting in nanodrugs]. Tehran: Tehran University; 2025 Jan 10. Persian.
36. Nanotechnology Headquarters of Iran. Comparative pricing analysis of domestic vs. imported nanodrugs. Tehran: NTH; 2024. Report No.: NTH-RP-2024-03.
37. Source: ACS Nano. Regulatory challenges in nanomedicine approval. ACS Nano. 2023 Jan;17(1):1-3. doi:10.1021/acsnano.2c12345
38. Source: J Pharm Sci. Cost analysis of nanodrug clinical trials. J Pharm Sci. 2024 Feb;113(2):345-50. doi:10.1016/j.xphs.2023.11.012
39. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000 Jun;156(4):1363-80. doi:10.1016/S0002-9440(10)65006-7
40. Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012 Apr 7;41(7):2780-99. doi:10.1039/C1CS15233E
41. Miao S, Zhu W, Castro NJ, Leng J, Zhang LG. Four-dimensional printing hierarchy scaffolds with highly biocompatible smart polymers for tissue engineering applications. Tissue Eng Part C Methods. 2016 Jul;22(6):584-93. doi:10.1089/ten.TEC.2015.0542
42. Walkey CD, Chan WC. Understanding nanomaterial-protein interactions. *Chem Soc Rev*. 2012;41(7):2780-99. doi:10.1039/C1CS15233E
43 . IRAN FDA. APPROVAL DOCUMENT OF SINADOXOSOME. REPORT NO.: IN-DF-2020-045; 2020.
44 . CHEN F, EHLERDING EB, CAI W. THERANOSTIC NANOPARTICLES. J NUCL MED. 2014 MAR;55(3):1919-22. DOI:10.2967/JNUMED.114.146019