Biological removal of zinc from automotive hazardous paint sludge by semi continuous bioleaching process
Subject Areas : Biotechnological Journal of Environmental Microbiology
Fatemeh Honarjooy Barkusaraey
1
,
Roya Mafi Gholami
2
,
Golam Khayati
3
1 - Environmental Engineering, Guilan Water and Wastewater Company, Lahijan, Iran
2 - Department of Environment, West Tehran Branch, Islamic Azad University, Tehran,
3 - Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
Keywords: Heavy Metals, Paint sludge, Semi- Continuous Bioleaching, Central Composite Design, Pseudomonas aeruginosa Indigenous,
Abstract :
Few studies have been conducted on detoxification, metal recovery, and stabilization prior to landfilling automotive paint sludge as hazardous waste. Most studies have focused on the direct use of paint sludge as a sealant and primer, its application in construction materials such as concrete, and the extraction of valuable organic and mineral materials from paint sludge. This study was conducted to remove heavy metals in batch conditions using indigenous Pseudomonas aeruginosa bacteria in water-based paint sludge under semi-continuous conditions, utilizing optimal parameters obtained from a previous study with constant parameters of pH 7, a temperature of 32 °C, paint sludge with a 3 mm mesh, a shaker speed of 180 rpm, and variable parameters of aeration(oxygen) and nutrients (glucose) for the removal of zinc and other metals. The results showed that increasing glucose and aeration have linear (direct) effects on the removal process of zinc and other metals, along with a mutual interaction between these two parameters.
Arce, R., Galán, B., Coz, A., Andrés, A., & Viguri, J. R. (2010). Stabilization/ solidification of an alkyd paint waste by carbonation of waste-lime based formulations. Journal of hazardous materials. 177(1-3): 428-436. doi: 10.1016/j.jhazmat.2009.12.050
Ghomi Avili, R., Takdastan, A., Atabi, F., & Omrani, G. A. (2018). Feasibility Study of Chromium Removal from Paint Sludge with Biological Sludge, Using Vermicompost by Eisenia fetida (Case Study: Saipa Automotive Industry). Jundishapur Journal of Health Sciences, 10(3). doi: 10.5812/jjhs.78891
Honarjooy Barkusaraey, F., Mafigholami, R., Faezi Ghasemi, M., & Khayati, G. (2021). Optimization of zinc bioleaching from paint sludge using Acidithiobacillus thiooxidans based on response surface methodology. Journal of Environmental Science and Health, Part A, 56(11), 1243-1252. https://doi.org/10.1080/10934529.2021.1979330
Honarjooy Barkusaraey, F., Mafigholami, R., Ghasemi, M. F., & Khayati, G. (2020). Isolation and identification of resistant microorganisms from automotive paint sludge. Jundishapur Journal of Health Sciences, 12(2). doi: 10.5812/jjhs.101226
Kim, I. S., Lee, J. U., & Jang, A. (2005). Bioleaching of heavy metals from dewatered sludge by Acidithiobacillus ferrooxidans. Journal of Chemical Technology & Biotechnology: International Research in Process,
Environmental & Clean Technology, 80(12), 1339-1348. https://doi.org/10.1002/jctb.1330 Khezri, S. M., Shariat, S. M., & Tabibian, S. (2013). Evaluation of extracting titanium dioxide from water-based paint sludge in auto-manufacturing industries and its application in paint production. Toxicology and industrial health, 29(8), 697-703.
Kulkarni, M., Student, P. G., APCOER, P., Thakare, I. D. S., & Gawande, S. (1975). Recycling of Hazardous Paint Waste in Constructions Material. Cal, 3274, 2500. www.ijeter.everscience.org.
Mäkinen, J., Salo, M., Khoshkhoo, M., Sundkvist, J. E., & Kinnunen, P. (2020). Bioleaching of cobalt from sulfide mining tailings; a mini-pilot study. Hydrometallurgy, 196, 105418. https://doi.org/10.1016/j.hydromet.2020.105418 Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
Mostafavi, M., Mirazimi, S., Rashchi, F., Faraji, F., Mostoufi, N. (2018). Bioleaching and Kinetic Investigation of WPCBs by A. ferrooxidans, A. thiooxidans and their Mixtures. J. Chem. Petrol. Eng. 52, 81–91. doi:10.22059/jchpe.2018.255842.1227.
Naseri T., Beiki V., Mousavi SM., Farnaud S. (2023). A comprehensive review of bioleaching optimization by statistical approaches: recycling mechanisms, factors affecting, challenges, and sustainability. RSC Adv.7;13(34):23570-23589. doi: 10.1039/d3ra03498d.
Navarro, E. M. G., Tagle, M. E. V., Marín, M. T. L., & Alfonso, M. S. P. (2011). Comparison of USEPA 3050B and ISO 14869-1: 2001. digestion methods for sediment analysis by using FAAS and ICP-OES quantification techniques. Química Nova, 34(8), 1443-1449. doi:10.1590/S0100-40422011000800025
Pathak, A., Kothari, R., Dastidar, M. G., Sreekrishnan, T. R., & Kim, D. J. (2014). Comparison of bioleaching of heavy metals from municipal sludge using indigenous sulfur and iron-oxidizing microorganisms: Continuous stirred tank reactor studies. Journal of Environmental Science and Health, Part A, 49(1), 93-100. doi:10.1080/10934529.2013.824737
Ruffino, B., Campo, G., Idris, S.S., Salihoğlu, G. and Zanetti, M., 2023. Automotive paint sludge: A review of pretreatments and recovery options. Resources, 12(4), p.45. doi:10.3390/resources12040045
Rashidi, S., Sani, A. H., & Razavi, S. (2017). The Effect of Environmental Conditions on the Removal of Organic Compounds from Color Sludge via Bioslurry Method. Biosciences Biotechnology Research Asia, 14(4), 1371-1384. http://dx.doi.org/10.13005/bbra/2582
Salihoglu N.K., Ucaroglu S., Salihoglu G. (2018). Bioconversion of industrial wastes: paint sludge from
automotive manufacturing. J Mater Cycles Waste Manage. 20(4):2100–2109. doi:10.1007/s10163-018-0764-z Shabani, M. A., Irannajad, M., Meshkini, M., & Azadmehr, A. R. (2019). Investigations on bioleaching of copper and zinc oxide ores. Transactions of the Indian Institute of Metals, 72(3), 609-611. https://doi.org/10.1007/s12666-018-1509-3
Tian, Y., Chen, L., Gao, L., Michel Jr, F. C., Keener, H. M., Klingman, M., & Dick, W. A. (2012). Composting of waste paint sludge containing melamine resin and the compost's effect on vegetable growth and soil water quality. Journal of hazardous materials, 243, 28-36. https://doi.org/10.1016/j.jhazmat.2012.09.013
Xue, C., Qi, P., & Liu, Y. (2018). Adsorption of aquatic Cd2+ using a combination of bacteria and modified carbon fiber. Adsorption Science & Technology, 36(3-4), 857-871
. https://doi.org/10.1177/0263617417724946 Zhou, S., Zhao, Q., Yu, T. and Yao, X., 2024. Co-pyrolysis of Sewage Sludge with Paint Sludge: Kinetics and Thermodynamic Analysis via Iso-conversional Methods. Journal of Wuhan University of Technology-Mater. Sci. Ed., 39(3), pp.716-727.doi:10.1007/s11595-024-2930-6