Fixed-Point Results in Neutrosophic Normed Spaces
Subject Areas : Transactions on Fuzzy Sets and Systems
Nirmal Sarkar
1
,
Jayanta Das
2
,
Ashoke Das
3
1 -
2 -
3 -
Keywords: Neutrosophic normed spaces, Banach Contraction, Kannans fixed-point, Caccioppolis fixed-point.,
Abstract :
This paper investigates fixed-point theorems within the framework of neutrosophic normed spaces. We provide a novel proof of the Banach Contraction Principle, offering fresh insights into its applicability in neutrosophic environments. Additionally, we extend both Caccioppolis and Kannans fixed-point theorems to neutrosophic linear spaces, establishing their validity in this generalized context. These results contribute to the theoretical advancement of neutrosophic analysis and broaden the scope of classical fixed-point theory.
[1] Smarandache F. Neutrosophic set: a generalization of the intuitionistic fuzzy set. International Journal of Pure and Applied Mathematics. 2005; 24(3): 287-297.
[2] Zadeh LA. Fuzzy sets. Information and Control. 1965; 8(3): 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
[3] Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986; 20(1): 87-96. DOI: https://doi.org/ 10.1016/S0165-0114(86)80034-3
[4] Cheng SC, Mordeson JN. Fuzzy linear operators and fuzzy normed linear spaces. First International Conference on Fuzzy Theory and Technology Proceedings, Abstracts and Summaries, 14-18 Oct. 1992. p.193-197.
[5] Felbin C. Finite dimensional fuzzy normed linear space. Fuzzy Sets and Systems. 1992; 48(2): 239-248. DOI:
https://doi.org/10.1016/0165-0114(92)90338-5
[6] Katsaras AK. Fuzzy topological vector spaces II. Fuzzy Sets and Systems. 1984; 12(2): 143-154. DOI: https://doi.org/10.1016/0165-0114(84)90034-4
[7] Bag T, Samanta SK. Finite dimensional fuzzy normed linear spaces. Journal of Fuzzy Mathematics. 2003; 11(3): 687-705.
[8] Bag T, Samanta SK. Fuzzy bounded linear operators. Fuzzy Sets and Systems. 2005; 151(3): 513-547. DOI: https://doi.org/10.1016/j.fss.2004.05.004
[9] Bag T, Samanta SK. Finite dimensional intuitionistic fuzzy normed linear spaces. Annals of Fuzzy Mathematics and Informatics. 2014; 8(2): 247-257.
[10] Das NR, Saha ML. On fixed points in complete fuzzy normed linear space. Annals of Fuzzy Mathematics and Informatics. 2015; 10(4): 515-524.
[11] Muralikrishna P, Kumar DS. Neutrosophic approach on normed linear space. Neutrosophic Sets and Systems. 2019; 30(18): 225-240.
[12] Omran S, Elrawy A. Continuous and bounded operators on neutrosophic normed spaces. Neutrosophic Sets and Systems. 2021; 46(20): 276-289.
[13] Kirisci M, imek N. Neutrosophic normed spaces and statistical convergence. The Journal of Analysis. 2020; 28: 1059-1073. DOI: https://doi.org/10.1007/s41478-020-00234-0
[14] Chaurasiya C, Ahmad A, Shankar H, Esi A. Exploring bounded linear operators in neutrosophic normed linear spaces. Fuzzy Information and Engineering. 2025; 17(1): 39-58. DOI: https://doi.org/10.26599/FIE.2025.9270052
[15] Aral ND, Kandemir H, Cakalli H. ρ-strong convergence in neutrosophic normed spaces. Transactions of A. Razmadze Mathematical Institute. 2025; 179(1): 11.
[16] Aloqaily A, Agilan P, Julietraja K, Annadurai S, Mlaiki N. A novel stability analysis of functional equation in neutrosophic normed spaces. Boundary Value Problems. 2024; 2024(47): 1-24. DOI: https://doi.org/10.1186/s13661-024-01854-2
[17] Abdel-Basset M, Mohamed R, Zaied AENH, Smarandache F. A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry. 2019; 11(7): 903. DOI: https://doi.org/10.3390/sym11070903
[18] Abdel-Basset M, Atef A, Smarandache F. A hybrid Neutrosophic multiple criteria group decision making approach for project selection. Cognitive Systems Research. 2019; 57: 216-227. DOI: https://doi.org/10.1016/j.cogsys.2018.10.023
[19] Grabiec M. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems. 1988; 27(3): 385-389. DOI: https://doi.org/10.1016/0165-0114(88)90064-4
[20] Sowndrarajan S, Jeyaraman M, Smarandache F. Fixed point results for contraction theorems in neutrosophic metric spaces. Neutrosophic Sets and Systems. 2020; 36(1): 308-318.