A new development in the automotive industry using nanocomposite phase-change materials
Subject Areas :
Aylar Masoumi
1
,
Aziz Babapoor
2
,
Mohamad Shafagati
3
,
Fatemeh Soleymani
4
,
Kosar Ghadimi
5
,
Melika Golgoon
6
1 - MSc Student, Chemical Engineering, Science and Technology, Tehran, Iran
2 - Department of Chemical Engineering, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
3 - PHD Student, chemical engineering, Department Of chemical engineering, Mohaghegh Ardabili University, Ardabil, Iran
4 - Chemical Engineering, Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
5 - Chemical Engineering, Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
6 - Chemical Engineering, Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
Keywords: Renewable energy, Automotive industry, Green transportation systems, Nanocomposites.,
Abstract :
With the emergence of modern innovations in renewable energies, as well as government and social pressures and requirements on companies and industries to reduce CO2 emissions and adopt appropriate environmental behaviors, companies and industries are forced to make changes in their policies in this regard. In particular, companies in the automotive sector have begun to implement sustainable and renewable energy production methods. This article examines the use of renewable energies in the automotive industry and its challenges and opportunities. Given the global developments in the field of sustainability and reducing negative environmental impacts, the automotive industry has moved towards the use of clean and renewable energy sources. The article studies sustainable production processes, the impact of government policies and environmental requirements on changes in the automotive industry, and the use of phase-change materials (PCM) to reduce energy consumption in vehicles. It also examines the importance of sustainable supply chain management and its role in reducing greenhouse gas emissions and improving the environmental performance of the automotive industry. One of the new solutions in the field of phase-change materials is the use of phase-change composites and nanocomposites. Adding materials to phase changers can improve thermal performance in energy storage.
[1] Pechancová V. Renewable energy potential in the automotive sector: Czech regional case study. J Secur Sustain Issues. 2017;4(1):537-545. doi: org/10.9770/jssi.2017.6.4(1)
[2] Abdullahi A, McGough D, Mateo-Garcia M. Testing innovative technologies for retrofitting: Coventry University as a living lab. Entrep Sustain Issues. 2017;4(3):257. doi: org/10.9770/jesi.2017.4.3S(2)
[3] Shafagati M, Babapoor A, Bamdezh M. Enhancing car battery energy efficiency with phase change material nanocomposites: A concise review. J Renew Energy Environ. 2024;11(1):74-88. doi: org/10.30501/jree.2023.388891.1563
[4] Jackson J. Decarbonisation through modernisation: The UK’s EV transition as a vehicle for industrial change. Compet Change. 2024;28(2):231-50. doi: org/10.1177/10245294231223320
[5] Lamb WF, Wiedmann T, Pongratz J, Andrew R, Crippa M, Olivier JG, et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ Res Lett. 2021;16(7):073005. doi: org/article/10.1088/1748-9326/abee4e/pdf
[6] Sikarwar VS, Reichert A, Jeremias M, Manovic V. COVID-19 pandemic and global carbon dioxide emissions: A first assessment. Sci Total Environ. 2021;794:148770. doi: org/10.1016/j.scitotenv.2021.148770
[7] Fawzy S, Osman AI, Doran J, Rooney DW. Strategies for mitigation of climate change: a review. Environ Chem Lett. 2020;18(6):2069-94. doi: org/10.1007/s10311-020-01059-w
[8] Zhao X, Liu C, Yang M. The effects of environmental regulation on China’s total factor productivity: An empirical study of carbon-intensive industries. J Clean Prod. 2018;179:325-34. doi: org/10.1016/j.jclepro.2018.01.100
[9] Pichler M, Krenmayr N, Schneider E, Brand U. EU industrial policy: Between modernization and transformation of the automotive industry. Environ Innov Soc Transit. 2021;38:140-52. doi: org/10.1016/j.eist.2020.12.002
[10] Grammelis P, Margaritis N, Dallas P, Rakopoulos D, Mavrias G. A review on management of end of life tires (ELTs) and alternative uses of textile fibers. Energies. 2021;14(3):571. doi: org/10.3390/en14030571
[11] Proenca J, Santos L. Sustainability & Business Relationships: A Case Study Research. In: Proceedings of the 37th Annual IMP Conference. Cork, Ireland; 2021. p. 26-27. Available from: https://hdl.handle.net/10216/141588.
[12] Farooque M, Zhang A, Thürer M, Qu T, Huisingh D. Circular supply chain management: A definition and structured literature review. J Clean Prod. 2019;228:882-900. doi: org/10.1016/j.jclepro.2019.04.303
[13] Kalverkamp M, Young SB. In support of open-loop supply chains: Expanding the scope of environmental sustainability in reverse supply chains. J Clean Prod. 2019;214:573-82. doi: org/10.1016/j.jclepro.2019.01.006
[14] Lemtaoui M, El Oueldrhiri S. Reverse supply chain practices in the Moroccan automotive industry: An exploratory study. In: 12th International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA). 2019. p. 1-5. doi: org/10.1109/LOGISTIQUA.2019.8907276
[15] Son D, Kim S, Park H, Jeong B. Closed-loop supply chain planning model of rare metals. Sustainability. 2018;10(4):1061. doi: org/10.3390/su10041061
[16] El Baz J, Frei R, Laguir I. Reverse supply chain practices in developing countries: The case of Morocco. J Manuf Technol Manag. 2017. doi: org/10.1108/JMTM-04-2017-0068
[17] Özbek M. The impact of robotic process automation on productivity in the automotive sector [dissertation]. [Bilecik]: Bilecik Şeyh Edebali University; 2024.
[18] Haghighi A, Babapoor A. The use of renewable energy as an effective way to reduce environmental pollution. J Renew New Energy. 2018;5(1):41-51. dor: 20.1001.1.24234931.1397.5.1.6.9
[19] Capuano L. Annual Energy Outlook 2019. Washington, DC: U.S. Energy Information Administration. 2019.
[20] Kazemi Fard S, Naji L, Afshar Taremi A. A review of the role of renewable energy sources in sustainable development. J Renew New Energy. 2017;4(1):34-43. dor: 20.1001.1.24234931.1396.4.1.6.2
[21] Peiró-Signes A, Payá-Martínez A, Segarra-Oña MV, de-Miguel-Molina M. What is influencing the sustainable attitude of the automobile industry? In: Golinska P, editor. Environmental issues in automotive industry. Poland: Springer; 2014. p. 47-63. doi: org/10.1007/978-3-642-23837-6_3
[22] García-Olivares A, Solé J, Osychenko O. Transportation in a 100% renewable energy system. Energy Convers Manag. 2018;158:266-85. doi: org/10.1016/j.enconman.2017.12.053
[23] Usman FO, Ani EC, Ebirim W, Montero DJ, Olu-lawal KA, Ninduwezuor-Ehiobu N. Integrating renewable energy solutions in the manufacturing industry: Challenges and opportunities: A review. Eng Sci Technol J. 2024;5(3):674-703. doi: org/10.51594/estj.v5i3.865
[24] García-Olivares A, Ballabrera-Poy J, García-Ladona E, Turiel A. A global renewable mix with proven technologies and common materials. Energy Policy. 2012;41:561-74. doi: org/10.1016/j.enpol.2011.11.018
[25] Sgouridis S, Csala D, Bardi U. The sower’s way: Quantifying the narrowing net-energy pathways to a global energy transition. Environ Res Lett. 2016;11(9):094009. doi:org/10.1088/1748-9326/11/9/094009.
[26] Heggelund GM. China’s climate and energy policy: At a turning point? Int Environ Agreem. 2021;21(1):9-23. doi: org/10.1007/s10784-021-09528-5
[27] Van de Graaf T. International energy agency. In: Sperling J, editor. Handbook of governance and security. UK: Edward Elgar Publishing; 2014. p. 489-503.
[28] García-Olivares A. Substitutability of electricity and renewable materials for fossil fuels in a post-carbon economy. Energies. 2015;8(12):13308-43. doi: org/10.3390/en81212371
[29] Swenson R. The solarevolution: Much more with way less, right now—the disruptive shift to renewables. Energies. 2016;9(9):676. doi: org/10.3390/en9090676
[30] Teter J, Cazzola P, Gul T, Mulholland E, Le Feuvre P, Bennett S, et al. The future of trucks: Implications for energy and the environment. Parise: IEA; 2017. doi: 10.1787/9789264279452-en
[31] Teske S, Pregger T, Simon S, Naegler T, Grijns-Graus WHJ, Lins C. Energy [R]evolution 2010-A sustainable world energy outlook. Energy Efficiency. 2011;4:409-433. doi: 10.1007/s12053-010-9098-y
[32] Schwanen T. Achieving just transitions to low-carbon urban mobility. Nat Energy. 2021;6(7):685-7. doi: org/10.1038/s41560-021-00856-z
[33] Villamil C, Nylander J, Hallstedt SI, Schulte J, Watz M. Additive manufacturing from a strategic sustainability perspective. In: Marjanović D, Štorga M, Škec S, Bojčetić N, Pavković N, editors. DS 92: Proceedings of the 15th International Design Conference-DESIGN 2018. 2018:1381-92. doi: org/10.21278/idc.2018.0353.
[34] Jiang J, Xiong Y, Zhang Z, Rosen DW. Machine learning integrated design for additive manufacturing. J Intell Manuf. 2020;33(4):1073-1086 doi: org/10.1007/s10845-020-01715-6
[35] Javaid M, Haleem A, Singh RP, Suman R, Rab S. Role of additive manufacturing applications towards environmental sustainability. Adv Ind Eng Polym Res. 2021;4(4):312-22. doi: org/10.1016/j.aiepr.2021.07.005
[36] Zhou T, Liu J, Liu J, Ren J, Ding S, Yang S. Energy-exergy-economic-environmental (4E) analysis and multi-objective optimization of a cascade LiBr/H2O refrigeration and Organic Rankine cycle integrated system for power generation. Appl Therm Eng. 2023;225:120142. doi: org/10.1016/j.applthermaleng.2023.120142
[37] Shin H, Ellinger AE, Nolan HH, DeCoster TD, Lane F. An assessment of the association between renewable energy utilization and firm financial performance. J Bus Ethics. 2018;151(4):1121-38. doi: org/10.1007/s10551-016-3249-9
[38] Andrade JCS, Puppim de Oliveira JA. The role of the private sector in global climate and energy governance. J Bus Ethics. 2015;130(2):375-87. doi: org/10.1007/s10551-014-2235-3
[39] Mayyas A, Qattawi A, Omar M, Shan D. Design for sustainability in automotive industry: A comprehensive review. Renew Sustain Energy Rev. 2012;16(4):1845-62. doi: org/10.1016/j.rser.2012.01.012
[40] BMW. Sustainable Value Report 2001/2002. Environment, Economy, Social Responsibility: Meeting the Future. BMW Munich; 2002.
[41] Wang Z, Subramanian N, Gunasekaran A, Abdulrahman MD, Liu C. Composite sustainable manufacturing practice and performance framework: Chinese auto-parts suppliers’ perspective. Int J Prod Econ. 2015;170:219-33. doi: org/10.1016/j.ijpe.2015.09.035.
[42] Keddari N, Kherbachi S, Benkhider N. Supporting sustainable manufacturing practices implementation using design structure matrix in the Algerian economy. 2021;10:12-14. doi: org/10.35199/dsm2021.10
[43] Masoumi SM, Kazemi N, Abdul-Rashid SH. Sustainable supply chain management in the automotive industry: A process-oriented review. Sustainability. 2019;11(14):3945. doi: org/10.3390/su11143945
[44] Nazir NM, Shavarebi K. A review of global automotive industry’s competitive strategies. World J Sci Technol Sustain Dev. 2019;11(14):3945. doi: org/10.3390/su11143945
[45] Deshmukh MK, Sameeroddin M, Abdul D, Sattar MA. Renewable energy in the 21st century: A review. Mater Today Proc. 2021. doi: org/10.1016/j.matpr.2021.05.501
[46] Ryms M, Denda H, Jaskuła P. Thermal stabilization and permanent deformation resistance of LWA/PCM-modified asphalt road surfaces. Constr Build Mater. 2017;142:328-41. doi: org/10.1016/j.conbuildmat.2017.03.050
[47] Wang J, Li Y, Zheng D, Mikulčić H, Vujanović M, Sundén B. Preparation and thermophysical property analysis of nanocomposite phase change materials for energy storage. Renew Sustain Energy Rev. 2021;151:111541. doi: org/10.1016/j.rser.2021.111541
[48] Gajević S, Stojanovic B, Ivanovic L, Miladinović S, Milojević S. Application of nanocomposites in the automotive industry. J Name. 2018;45(3):51-64. doi: org/10.24874/mvm.2019.45.03.05
[49] Kannan PCD, Palaniradja K. Review on phase change material to maintain the human comfort inside the car. IOSR J Mech Civ Eng. 2015;12(4):27-29. doi: org/10.9790/1684-12422729
[50] Patel D, Manjrawala PB, Khunt UB, Savaliya DR. Phase change material (PCM) in automotive climate control system. Int J Res Eng Sci Manag. 2021;4(11):11-18. Available from: https://journal.ijresm.com/index.php/ijresm/article/view/1486
[51] Aslfattahi N. Development of novel phase change material (PCM)-based nanocomposites using emerging nanomaterials for energy storage applications [dissertation]. [Malaya]: University of Malaya; 2021.
[52] Doty S, Turner WC. Energy management handbook., Fifth edition. Switzerland: Taylor & Francis, 2004.
[53] Arasu A, Sasmito A, Mujumdar A. Thermal performance enhancement of paraffin wax with Al2O3 and CuO nanoparticles—A numerical study. Front Heat Mass Transf. 2012;2(4):1-7. doi: org/10.5098/hmt.v2.4.3005
[54] Yanuar F. The health status model in urban and rural society in West Sumatra, Indonesia: An approach of structural equation modeling. Indian J Sci Technol. 2016;9(8):1-8. doi: org/ 10.17485/ijst/2016/v9i4/72601
[55] Babapoor A, Haghighi AR, Jokar SM, Ahmadi Mezjin M. The performance enhancement of paraffin as a PCM during the solidification process: Utilization of graphene and metal oxide nanoparticles. Iran J Chem Chem Eng. 2022;41(1):37-48. doi: org/10.30492/ijcce.2020.127799.4135
[56] Haghighi A, Babapoor A, Azizi M, Javanshir Z, Ghasemzade H. Optimization of the thermal performance of PCM nanocomposites. J Energy Manag Technol. 2020;4(2):14-19. doi: org/10.22109/jemt.2019.152458.1134
[57] Maleki H, Howard JN. Effects of overdischarge on performance and thermal stability of a Li-ion cell. J Power Sources. 2006;160(2):1395-402. doi: org/10.1016/j.jpowsour.2006.03.043
[58] Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transf. 2007;34(5):534-43. doi: org/10.1016/j.icheatmasstransfer.2007.02.005
[59] Babapoor A, Karimi G, Khorram M. Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning. Appl Therm Eng. 2016;99:1225-35. doi: org/10.1016/j.applthermaleng.2016.02.026
[60] Bahari M, Najafi B, Babapoor A. Evaluation of α-AL2O3-PW nanocomposites for thermal energy storage in the agro-products solar dryer. J Energy Storage. 2020;28:101181. doi: org/10.1016/j.est.2019.101181
[61] Jilte R, Afzal A, Panchal S. A novel battery thermal management system using nano-enhanced phase change materials. Energy. 2021;219:119564. doi: org/10.1016/j.energy.2020.119564.
