Calculation of the energy eigenvalue and linear refractive index changes and intersubband optical absorption coefficients in a Confineme quantum dot with a potential
Subject Areas : Journal of Optoelectronical NanostructuresHeydar Izadneshan 1 , Ghahreman Soloki Nejad 2 , Mohsen Bagheri 3
1 -
2 -
3 -
Keywords: Quantum dot energy eigenvalue, Nonlinear and linear optical properties,
Abstract :
In this study, a comprehensive analysis of the electronic energy spectrum and refractive index variations in semiconductor quantum dots is presented. Using the matrix formalism, the relationship between the linear refractive index and carrier concentration is systematically derived. Numerical calculations are carried out for a GaAs/AlₓGa₁₋ₓAs quantum dot heterostructure to explore how optical excitation intensity, dot size, and alloy composition influence the energy levels and optical response. The results demonstrate that these parameters significantly modify both the electronic structure and optical coefficients, including the linear, nonlinear, and third-order absorption behaviors. These coefficients are further examined as functions of photon energy and incident optical field intensity, exhibiting characteristics similar to those observed in quantum wells. Notably, the enhanced absorption within the visible and infrared regions highlights the strong potential of such quantum dots for advanced optoelectronic devices, particularly high-efficiency photodetectors, lasers, and solar energy conversion systems.
[1] M.A. Reed, Sci. Am. 268 (1993) 118.
[2] N. Kristaedter, et al., Appl. Phys. Lett. 69 (1996) 1226.
[3] E. Leobandung, L. Guo, S.Y. Chou, Appl. Phys. Lett. 67 (1995) 2338.
[4] K.K. Likharev, IBM J. Res. Dev. 32 (1998) 1444.
[5] D. Loss, D.P. Divicenzo, Phys. Rev. A 57 (1998) 120.
[6] K. Imamura, et al., Jpn. J. Appl. Phys. 34 (1995) L1445.
[7] C.S. Lent, et al., Nanotechnology 4 (1993) 49.
[8] X. Jiang, S.S. Li, M.Z. Tidrow, Physica E 5 (1999) 27.
[9] L. Esaki, R. Tsu, IBM J. Res. Dev. 14 (1970) 61.
[10] L. Zhang, H.J. Xie, Phys. Rev. B 68 (2003) 235315.
[11] I ˙. Karabulut, U ¨ . Atav, H. S -afak, Phys. Rev. B 72 (2005) 207301.
[12] I ˙. Karabulut, H. S -afak, M. Tomak, Solid State Commun 135 (2005)735.
[13] I ˙. Karabulut, H. S -afak, Physica B 368 (2005) 82.
[14] M.K. Gurnick, T.A. DeTemple, IEEE J. Quantum Elect. 19 (1983)791.
[15] M.M. Fejer, et al., Phys. Rev. Lett. 62 (1989) 1041.
[16] T. Takagahara, Phys. Rev. B 36 (1987) 9293.
[17] S. Sauvage, et al., Phys. Rev. B 59 (1999) 9830.
[18] T. Brunhes, et al., Phys. Rev. B 61 (2000) 5562.
[19] Y. Kan, et al., IEEE J. Quantum Elect. 23 (1987) 2167.
[20] D. Ahn, S.L. Chuang, IEEE J. Quantum Elect. 23 (1987) 2196.
[21] S.L. Chuang, D. Ahn, J. Appl. Phys. 65 (1989) 2822.
[22] J.J. Shi, S.H. Pan, Superlattice Microstruct. 17 (1995) 91.
[23] K.J. Kuhn, et al., J. Appl. Phys. 70 (1991) 5010.
[24] I ˙. Karabulut, S. U ¨ nlu ¨ , H. S -afak, Phys. Stat. Sol. B 242 (2005) 2902.
[25] Zekavat, M.A., M. Sabaeian, and G. Solookinejad, journal of Optoelectronical Nanostructure 6 (3) 81-92 2021.
[26] Rana,M., et al.,Inorganic Chemistry Communication 112 (2020) 107723
[27] H. Izadneshan, V. F.Gremenok, “Influence of thickness on the structural properties of annealed In2S3
thin films deposited by thermal evaporation”, Problems of physics, mathematics and engineering. T. 18, № 1
S. 21(2014) 25. http://mi.mathnet.ru/eng/pfmt283
