Phase Transformations of Low-Alloy Steel DIN 1.5025 under Isothermal Holding in the Bainitic Region and the Formation of Microcomposite Microstructures
Subject Areas : journal of New MaterialsShima Pashangeh 1 , Seyed Sadegh Ghasemi Banadkouki 2 , Mohammad Hadi Mohammad Hadi 3
1 - Assistant prof. of Materials Engineering, Department of Materials Engineering, Yasouj University, Yasouj, Iran
2 - Associate prof., Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran
3 - aAssistant prof. of Electrical Engineering, Department of Electrical Engineering, Yasouj University, Yasouj, Iran
Keywords: Heat treatment, Microcomposite structures, Multi-phase steels, Bainite, Hardness testing,
Abstract :
In this study, a medium-carbon steel sheet sample (wt.%C: 0.529) with high silicon content (wt.%Si: 1.67) was selected. The process involved applying heat treatment cycles with isothermal holding in the bainitic region, which included austenitizing at 900°C for 5 minutes, followed by rapid transfer to a molten salt bath in the temperature range of 400-500°C. The samples were held for varying times, from 5 seconds to 1 hour, and then quenched rapidly in water. The goal of the heat treatment process was to investigate phase transformations in microcomposite structures. In the next step, initial microstructural investigations and phase transformations under different heat treatment conditions were conducted using laser and scanning electron microscopes, along with dilatometry tests. Subsequently, the mechanical behavior of the heat-treated samples under different conditions was evaluated using macrohardness tests. The results indicated that achieving microcomposite structures was possible using these heat treatment conditions. Additionally, increasing the holding temperature in the bainitic region accelerated the kinetics of bainite formation. Prolonged holding times at these temperatures led to a tempering process, as confirmed by dilatometry tests. Hardness tests also revealed that the hardness increased with decreasing isothermal holding temperatures in the range of 400-500°C. Specifically, the maximum hardness values at 500°C, 450°C, and 400°C were measured at 341, 370, and 442 HV30kg, respectively.
|
1. Tasan CC, Diehl M, Yan D, Bechtold M, Roters F, Schemmann L, et al. An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design. Annu Rev Mater Res. 2015;45(1):391–431. Available from: http://www.annualreviews.org/doi/10.1146/annurev-matsci-070214-021103
2. Song R, Ponge D, Raabe D, Speer JG, Matlock DK. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng A. 2006;441(1–2):1–17.
3. Pashangeh S, Somani M, Sadegh S, Banadkouki G. Structure-Property Correlations of a Medium C Steel Following Quenching and Isothermal Holding above and below the M s Temperature. 2021;61(1):1–10.
4. Raabe D, Sun B, Kwiatkowski Da Silva A, Gault B, Yen HW, Sedighiani K, et al. Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels. Metall Mater Trans A. 2020;51(11):5517–86. Available from: https://doi.org/10.1007/s11661-020-05947-2
5. Wang L, Speer JG. Quenching and Partitioning Steel Heat Treatment. Metallogr Microstruct Anal [Internet]. 2013;2(4):268–81. Available from: http://link.springer.com/10.1007/s13632-013-0082-8
6. Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: A review. Vol. 795, Materials Science and Engineering A. Elsevier B.V.; 2020. 140023 p. Available from: https://doi.org/10.1016/j.msea.2020.140023
7. Shterner V, Molotnikov A, Timokhina I, Estrin Y, Beladi H. A constitutive model of the deformation behaviour of twinning induced plasticity (TWIP) steel at different temperatures. Mater Sci Eng A. 2014;613:224–31.
8. Sherif MY, Mateo CG, Sourmail T, Bhadeshia HKDH. Stability of retained austenite in TRIP-assisted steels. Mater Sci Technol. 2004;20(3):319–22. Available from: http://www.tandfonline.com/doi/full/10.1179/026708304225011180
9. Speer JG, Assunção FCR, Matlock DK, Edmonds D V. The “quenching and partitioning” process: background and recent progress. Mater Res [Internet]. 2005;8(4):417–23. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392005000400010&lng=en&nrm=iso&tlng=en
10. Gong W, Tomota Y, Harjo S, Su YH, Aizawa K. Effect of prior martensite on bainite transformation in nanobainite steel. Acta Mater. 2015;85:243–9. Available from: https://www.sciencedirect.com/science/article/pii/S1359645414008829
11. Nakagawa AH, Thomas G. Microstructure-mechanical property relationships of dual-phase steel wire. Metall Trans A. 1985;16(May):831–40.
12. M Akbarpour et al. Effect of long duration intercritical heat treatment on the mechanical properties of AISI 4340 steel. 2010;28(2).
13. Varshney A, Sangal S, Kundu S, Mondal K. Superior work hardening behavior of moderately high carbon low alloy super strong and ductile multiphase steels with dispersed retained austenite. Mater Des. 2016;99:439–48. Available from: https://www.sciencedirect.com/science/article/pii/S0264127516303677
14. Mohammadi Zahrani M, Ketabchi M, Ranjbarnodeh E. Microstructure development and mechanical properties of a C-Mn-Si-Al-Cr cold rolled steel subjected to quenching and partitioning treatment. J Mater Res Technol. 2023;22:2806–18. Available from: https://doi.org/10.1016/j.jmrt.2022.12.130
15. Franceschi M, Soffritti C, Fortini A, Pezzato L, Garagnani GL, Dabalà M. Evaluation of wear resistance of a novel carbide-free bainitic steel. Tribol Int. 2023;178(September 2022).
16. Pan Y, Wang B, Barber GC. Study of bainitic transformation kinetics in SAE 52100 steel. J Mater Res Technol. 2019;8(5):4569–76. Available from: https://doi.org/10.1016/j.jmrt.2019.08.001
17. Acharya P, Kumar A, Bhat R. Microstructure and wear behavior of austempered high carbon high silicon steel. MATEC Web Conf. 2018;144:1–7.
18. Odder BYASAHAP, Onardelli IL, Olinari AM. Thermal stability of retained austenite in bainitic steel : an in situ study. 2011;(March):3141–56.
19. Huyghe P, Malet L, Caruso M, Georges C, Godet S. Materials Science & Engineering A On the relationship between the multiphase microstructure and the mechanical properties of a 0 . 2C quenched and partitioned steel. Mater Sci Eng A. 2017;701(February):254–63. Available from: http://dx.doi.org/10.1016/j.msea.2017.06.058
20. Zhao J, Lv B, Zhang F, Yang Z, Qian L, Chen C, et al. Effects of austempering temperature on bainitic microstructure and mechanical properties of a high-C high-Si steel. Mater Sci Eng A. 2019;742(October 2018):179–89.
21. Liu M, Hu H, Kern M, Lederhaas B, Xu G, Bernhard C. Effect of integrated austempering and Q&P treatment on the transformation kinetics, microstructure and mechanical properties of a medium-carbon steel. Mater Sci Eng A. 2023;869:144780. Available from: https://www.sciencedirect.com/science/article/pii/S0921509323002046
22. Edmonds D, Matlock D, Speer J. The recent development of steels with carbide-free acicular microstructures containing retained austenite. La Metall Ital. 2011;(1).
23. Gao G, Zhang H, Tan Z, Liu W, Bai B. Materials Science & Engineering A A carbide-free bainite / martensite / austenite triplex steel with enhanced mechanical properties treated by a novel quenching – partitioning – tempering process. Mater Sci Eng A. 2013;559:165–9. Available from: http://dx.doi.org/10.1016/j.msea.2012.08.064
24. Hell JC, Dehmas M, Allain S, Prado JM, Hazotte A, Chateau JP. Microstructure properties relationships in carbide-free bainitic steels. ISIJ Int. 2011;51(10):1724–32.
25. پشنگه ش, قاسمی بنادکوکی سص. اصلاح شگرف خواص کششی یک فولاد کمآلیاژ سیلیسیم متوسط DIN 1.5025 در شرایط عملیات حرارتی کوئنچ و پارتیشنبندی تک مرحلهای در مقایسه با شرایط کاملا مارتنزیتی. فصلنامه علمی - پژوهشی مواد نوین. 2020;11(40):59–74. Available from: https://jnm.marvdasht.iau.ir/article_4319.html
26. Mašek B, Jirková H, Hauserova D, Kučerová L, Klauberová D. The Effect of Mn and Si on the Properties of Advanced High Strength Steels Processed by Quenching and Partitioning. In: PRICM7. Trans Tech Publications Ltd; 2010. p. 94–7. (Materials Science Forum; vol. 654).
27. Escobar JD, Faria GA, Wu L, Oliveira JP, Mei PR, Ramirez AJ. Austenite reversion kinetics and stability during tempering of a Ti-stabilized supermartensitic stainless steel: Correlative in situ synchrotron x-ray diffraction and dilatometry. Acta Mater. 2017;138:92–9.
28. Crystallography A, Technion K dieter L. Growth of bainitic ferrite and carbon partitioning during the early stages of bainite transformation in a 2 mass % silicon steel stu .... 2016;(March).
29. Pashangeh S, Somani MC, Ghasemi Banadkouki SS, Karimi Zarchi HR, Kaikkonen P, Porter DA. On the decomposition of austenite in a high-silicon medium-carbon steel during quenching and isothermal holding above and below the Ms temperature. Mater Charact. 2020;162:110224. Available from: http://www.sciencedirect.com/science/article/pii/S1044580319330657
30. Thibaux P, Métenier A, Xhoffer C. Carbon Diffusion Measurement in Austenite in the Temperature Range 500 °C to 900 °C. Metall Mater Trans A [Internet]. 2007;38(6):1169–76. Available from: https://doi.org/10.1007/s11661-007-9150-5
31. Kang SH, Im YT. Three-dimensional finite-element analysis of the quenching process of plain-carbon steel with phase transformation. Metall Mater Trans A. 2005;36:2315–25. Available from: https://api.semanticscholar.org/CorpusID:8429573
32. Xin X, Rendong L, Baoyu X, Hongliang Y, Guodong W. Effects of Bainite Isothermal Temperature on Microstructure and Mechanical Properties of a δ-TRIP Steel. IOP Conf Ser Mater Sci Eng. 2020;739(1).
33. Kumar S. Isothermal Transformation Behavior and Microstructural Evolution of Micro-Alloyed Steel. In: Sharma A, Duriagina Z, Kumar S, editors. Engineering Steels and High Entropy-Alloys. Rijeka: IntechOpen; 2019. Available from: https://doi.org/10.5772/intechopen.85900
34. Bohemen SMC Van, Santofimia MJ, Sietsma J. Experimental evidence for bainite formation below M s in Fe – 0 . 66C. 2008;58:488–91.
35. Somani MC, Porter DA, Karjalainen LP, Misra RDK. On Various Aspects of Decomposition of Austenite in a High-Silicon Steel During Quenching and Partitioning. 2014;45(3):1247–57.
36. Somani MC, Porter DA, Karjalainen LP, Misra DK. Evaluation of DQ & P Processing Route for the Development of Ultra-high Strength Tough Ductile Steels. 2012;