study and determine the isotherm of Metronidazole absorption with new Co-MOF nanostructure [[Co2(TATAB)(OH)(H2O)2].H2O.0.6O]n
Subject Areas :Seyedeh Elahe Hosseini 1 , Mohammad Kazem Mohammadi 2 , Ayeh Rayatzadeh 3 , Haman Tavakkoli 4 , Payam Hayati 5
1 -
2 -
3 - Department of Chemistry, Ahvaz Branch, Islamic Azad university
4 -
5 -
Keywords: Adsorption, Metronidazole, Co-MOF, Removal, Isotherm ,
Abstract :
The simple chemical synthesis method was used for the preparation of nano Co-MOF nanostructures. In this study, Co-MOF nanostructure was presented as a good, natural, and inexpensive adsorbent and successfully used for the removal of metronidazole dyes from various water solutions. The structural functionalities and morphological observations were confirmed by FESEM- XRD- FTIR- EDS- TEM. In this research, the effect of various parameters such as pH, dye concentration, amount of adsorbent, contact time, and temperature on the removal process for metronidazole was investigated. The adsorption process was dependent on pH, initial dye concentration, adsorbent dose, contact time, and temperature. The maximum removal was 99.5 % under optimal conditions. The isothermal adsorption data could be interpreted by the isothermal models of Langmuir and Freundlich. The experimental data agreed with Freundlich's adsorption isotherms. Optimized values for metronidazole removal were pH: 9, contact time: 120 minutes, dye concentration: 10 mg/ l, and catalyst mass: 0.04 g. Under these optimal conditions, the maximum removal efficiency reached 99.5%. |
[1] M. Mazloum, M. Salavati Niassary, M. K. Amini, Sens. Actuators B 82 (2002) 259-268.
[2] M. Shamsipur, M. R. Ganjali, A. Rouhollahi, A. Moghimi, Anal. Chim. Acta 434 (2001) 23-31.
[3] E. Bakker, P. Bühlmann, E. Pretsch, Chem. Rev. 97 (1997) 3083-3094.
[4] V. Alexander, Chem. Rev. 95 (1995) 273-287.
[5] K. Byriel, K. R. Dunster, L. R. Gahan, C. H. L. Kennard, J. L. Latten, I. L. Seann, P. A. Duckworth, Inorg. Chim. Acta 205 (1993) 191-198.
[6] K. Byriel, K. R. Dunster, L. R. Gahan, C. H. L. Kennard, J. L. Latten, I. L. Seann, P. A. Duckworth, Polyhedron 11 (1992) 1205-1212.
[7] V. K. Gupta, A. K. Singh, S. Mehtab, B. Gupta, Anal. Chim. Acta 566 (2006) 5-12.
[8] M. R. Ganjali, T. Poursaberi, M. khoobi, A. Shafiee, M. Adibi, M. Pirali-Hamedani, P. Norouzi, Int. J. Electrochem. Sci. 6 (2011) 717-724.
[9] Y. Umezawa, K. Umezawa, H. Sato, Pure Appl. Chem. 67 (1995) 507-512.
[10] R. P. Buck, E. Lindner, Pure Appl. Chem. 66 (1994) 2527-2531.
[11] E. L. Jammal A. Bouklouze A. A. Patriarche, Talanta, 38 (1991) 929-935.
[12] M. Yi-long, R. Xiao-hong, Z. Shi-ming, J. Tongji Medical Uni. 12 (1992) 98-102.
[13] A. Kumar, S. K. Mittal, Sens. Actuators B 99 (2004) 340-343.
[14] A. Kumar, M. Sameena, Sens. Actuators B 123 (2007) 429-436.
[15] M.S. Thomas, S. Thomas, L.A. Pothen, Science and Technology of Nanomaterials: Introduction, in: Nanotechnol. Environ. Remediat., John Wiley & Sons, Ltd, 2022: pp. 1–15.
[16] L. Qi, Z. Xu, X. Jiang, C. Hu, X. Zou, Carbohydr. Res. 339 (2004) 2693–2700.
[17] C. Yao, Y. Shin, L.-Q. Wang, Windisch Charles F., W.D. Samuels, B.W. Arey, C. Wang, Risen William M., G.J. Exarhos, J. Phys. Chem. C. 111 (2007) 15141–15145.
[18] N. Baccile, G. Laurent, F. Babonneau, F. Fayon, M.-M. Titirici, M. Antonietti, J. Phys. Chem. C. 113 (2009) 9644–9654.
[19] A. Gedanken, Using sonochemistry for the fabrication of nanomaterials, 11 (2004) 47–55.
[20] S. Barcikowski, A. Plech, K.S. Suslick, A. Vogel, MRS. Bull. 44 (2019) 382–391.
[21] G. Qiu, Q. Wang, M. Nie, Macromol. Mater. Eng. 291 (2006) 68–74.
[22] G. Song, S. Ma, G. Tang, X. Wang, Eng. Asp. 364 (2010) 99–104.
[23] H. Xia, Q. Wang, J. Nanoparticle Res. 3 (2001) 401–411.
[24] M. Hosseini, H. Rezaei Ashtiani, D. Ghanbari, Ultrasonic Preparation of Cobalt, Nickel, J. Nanostructures. 12 (2022) 588–597.
[25] J. Sun, L. Qian, J. Li, Polymer (Guildf). 210 (2020) 122994.
[26] X. Wang, T. Chen, J. Hong, W. Luo, B. Zeng, C. Yuan, Y. Xu, G. Chen, L. Dai, Compos. Part B Eng. 200 (2020) 108271.