Multi-Objective Optimization of Optical Micro resonators for Integrated Optoelectronic Applications
Aَli Jokar
1
(
)
mhdi taghizadeh
2
(
)
Nahid Adlband
3
(
)
Jasem Jamali
4
(
)
Mohammad Mehdi Ghanbarian
5
(
)
Keywords: Optical micro resonators, Multi-objective optimization, integrated optoelectronics, High-Q resonators, perforated ring resonator, Nanoparticle-enhanced photonics,
Abstract :
This study presents the multi-objective design and optimization of optical microresonators for integrated optoelectronic applications. The research addresses key challenges such as enhancing efficiency, minimizing energy losses, and improving structural performance to achieve high-Q operation. Using advanced photonic simulation tools, critical parameters—including doping concentration, geometric modifications, and plasmonic nanoparticle incorporation—were optimized. The results show that a moderately doped MRR (1×10¹⁷ cm⁻³) achieves Q-factors exceeding 15,000 and increases the absorption coefficient up to ~1.47, representing more than a sevenfold improvement compared to the undoped case. Furthermore, integration of Au/Ag nanoparticles enhances absorption by nearly 10× and boosts sensitivity by 20–25%. The optimized perforated resonator design also broadens the resonance spectrum, enabling multi-resonant operation suitable for advanced sensing applications. Overall, the proposed hybrid MRR configuration demonstrates superior light confinement, absorption enhancement, and detection sensitivity, highlighting its strong potential for next-generation optoelectronic integration.
1. Mohammadi, A., Parandin, F., Karami, P., & Olyaee, S. (2025). Design and Optimization of Optical NAND and NOR Gates Using Photonic Crystals and the ML-FOLD Algorithm. Photonics, 12(6), 576. https://doi.org/10.3390/photonics12060576
2. Anwar, R. S., Ning, H., & Mao, L. (2018). Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digital Communications and Networks, 4(4), 244–257. https://doi.org/10.1016/j.dcan.2017.08.004
3. Alexandre-Franco, M. F., Kouider, R., Kassir Al-Karany, R., Cuerda-Correa, E. M., & Al-Kassir, A. (2024). Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview. Micromachines, 15(9), 1137. https://doi.org/10.3390/mi15091137
4. Binfeng, Y., Guohua, H., & Yiping, C. (2014). Polymer waveguide Bragg grating Fabry–Perot filter using a nanoimprinting technique. Journal of Optics, 16, 105501. https://doi.org/10.1088/2040-8978/16/10/105501
5. Mallika, C. S., & Shwetha, M. (2025). Plasmonic ring resonator-based sensors: Design, performance, and applications. Plasmonics, 20(1), 1–15. https://doi.org/10.1007/s11468-025-02890-z
6. Sharma, I., & Sumetsky, M. (2025). Widely FSR tunable high Q-factor microresonators formed at the intersection of straight optical fibers. Optica, 12(6), 789–795. https://doi.org/10.1364/OPTICA.565224
7. Liu, J., Huang, G., Wang, R. N., He, J., Raja, A. S., Liu, T., Engelsen, N. J., & Kippenberg, T. J. (2025). High-yield wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nature Photonics, 19(2), 123–130. https://doi.org/10.1038/s41566-025-01123-8
8. Butt, M. A., Khonina, S. N., & Kazanskiy, N. L. (2019). A multichannel metallic dual nano-wall square split-RR: Design analysis and applications. Laser Physics Letters, 16, 126201. https://doi.org/10.1002/lapl.201926201
9. Butt, M. A., Khonina, S. N., & Kazanskiy, N. L. (2020). Highly sensitive refractive index sensor based on hybrid plasmonic waveguide MRR. Waves in Random and Complex Media, 30(3), 292–299. https://doi.org/10.1080/17455030.2019.1611520
10. Butt, M. A., Khonina, S. N., & Kazanskiy, N. L. (2021). Plasmonics: A necessity in the field of sensing – A review (Invited). Fiber and Integrated Optics, 40(1), 14–47. https://doi.org/10.1080/01468030.2021.1902590
11. Butt, M. A., Imran Akca, B., & Mateos, X. (2025). Integrated photonic biosensors: Enabling next-generation lab-on-a-chip platforms. Nanomaterials, 15(10), 731. https://doi.org/10.3390/nano1510731
12. Zhou, J., Al Husseini, D., Li, J., et al. (2022). Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors. Scientific Reports, 12, 5572. https://doi.org/10.1038/s41598-022-09597-9
13. Laplatine, L., et al. (2022). Silicon photonic olfactory sensor based on an array of 64 biofunctionalized Mach–Zehnder interferometers integrated on a silicon chip. Optics Express, 30(19), 33955–33965. https://doi.org/10.1364/OE.30.033955
14. Gonzalez-Vila, A., Debliquy, M., Lahem, D., Zhang, C., Mégret, P., & Caucheteur, C. (2017). Molecularly imprinted electropolymerization on a metal-coated optical fiber for gas sensing applications. Sensors and Actuators B: Chemical, 244, 1145–1151. https://doi.org/10.1016/j.snb.2017.01.045
15. Hazra, S., Bhattacharjee, A., Chand, M., Salunkhe, K., Gopalakrishnan, S., Patankar, M., & Vijay, R. (2021). Ring-resonator-based coupling architecture for enhanced connectivity in a superconducting multiqubit network. Physical Review Applied, 16(2), 024018. https://doi.org/10.1103/PhysRevApplied.16.024018
16. Deshmukh, S. S., et al. (2022). Current and future trends for polymer micro- and nanofabrication: Hot embossing, micro-injection, nanoimprint, etc. Advanced Materials, 34(12), 2200903. https://doi.org/10.1002/adma.202200903
17. Janeiro, R., Flores, R., & Viegas, J. (2019). Silicon photonics waveguide array sensor for selective detection of VOCs at room temperature. Scientific Reports, 9, 17099. https://doi.org/10.1038/s41598-019-53585-0
18. Kaplan, A., & Bassi, P. (2020). Tunable narrow band optical reflector based on indirectly coupled micro RRs. Optics Express, 28(9), 13497–13515. https://doi.org/10.1364/OE.28.013497
19. Kazanskiy, N. L., Khonina, S. N., & Butt, M. A. (2020). Subwavelength grating double slot waveguide racetrack RR for refractive index sensing application. Sensors, 20(12), 3416. https://doi.org/10.3390/s20123416
20. Khonina, S., Voronkov, G., Grakhova, E., Kazanskiy, N., Kutluyavor, R., & Butt, M. (2023). Polymer waveguide-based optical sensors—Interest in bio, gas, temperature, and mechanical sensing applications. Coatings, 13(3), 549. https://doi.org/10.3390/coatings13030549
21. Zhang, F., et al. (2023). Experimental realization of topologically-protected all-optical logic gates based on silicon photonic crystal slabs. Laser & Photonics Reviews, 17(8), 220037. https://doi.org/10.1002/lpor.202370037
22. He, L., et al. (2021). Topology-optimized ultra-compact all-optical logic devices on silicon photonic platforms. arXiv preprint, arXiv:2110.03474. https://doi.org/10.48550/arXiv.2110.03474
23. Okmetic. (n.d.). SOI wafers – Silicon-On-Insulator line. Retrieved)2023(, from https://www.okmetic.com/silicon-wafers/soi-wafers-silicon-on-insulator-line
24. Microfluidic ChipShop. (n.d.). Polymer substrates & foils. Retrieved April 15, 2023, from https://www.microfluidic-chipshop.com/catalogue/polymer-substrates-foils
25. Rickman, A. (2014). The commercialization of silicon photonics. Nature Photonics, 8(8), 579–582. https://doi.org/10.1038/nphoton.2014.175
26. Kim, W., et al. (2024). From light to logic: Recent advances in optoelectronic logic gate devices. Small Science, 4(5), 2400264. https://doi.org/10.1002/smsc.202400264
27. Janeiro, R., Flores, R., & Viegas, J. (2019). Silicon photonics waveguide array sensor for selective detection of VOCs at room temperature. Scientific Reports, 9, 17099. https://doi.org/10.1038/s41598-019-52264-9
28. Kaplan, A., Bassi, P., & Bellanca, G. (2020). Tunable narrow band optical reflector based on indirectly coupled micro RRs. Optics Express, 28(13), 13497–13515. https://doi.org/10.1364/OE.397586
29. Butt, M. A., et al. (2023). Metal‐Insulator‐Metal waveguide plasmonic sensor system for refractive index sensing applications. Advanced Photonics Research, 4(1), 2300079. https://doi.org/10.1002/adpr.202300079
30. Aparna, U., & Kumar, P. (2023). Compact and efficient ring resonator–based plasmonic lens with nanogrooves for enhanced light confinement. Plasmonics, 18(2), 351–358. https://doi.org/10.1007/s11468-022-01770-0
31. Wang, J., et al. (2025). A machine learning based study of vertically loaded diamond microdisk resonators. ResearchGate, 2025. https://www.researchgate.net/publication/395656553_A_Machine_Learning_based_Study_of_Vertically_Loaded_Diamond_Microdisk_Resonator
32. Zhang, Y., et al. (2025). Plasmon enhanced universal SERS detection of hierarchical micro-nano plastic pollutants. Advanced Science, 12(5), 202500062. https://doi.org/10.1002/advs.202500062
33. Kim, T., et al. (2025). Numerical analysis of excitation light absorption enhancement in two-dimensional photonic crystal phosphor films. Proceedings of SPIE, 13698, 1369809. https://doi.org/10.1117/12.3072626