Comparison of the Performance and Structural Features of Silicon Surface Barrier (SSB) Detectors and Passivated Implanted Planar Silicon (PIPS) Detectors in Nuclear and Medical Applications
Subject Areas : NanobiotchnologyFatemeh Namdarnia 1 , Lida Amanelahi Dorcheh 2 , Elahe Zeynolabedini 3 , Dariush Sardari 4
1 - DepartmentMedical Radiation engineering, Science and Research Branch, Islamic Azad University
2 - DepartmentMedical Radiation engineering, Science and Research Branch, Islamic Azad University
3 - DepartmentMedical Radiation engineering, Science and Research Branch, Islamic Azad University
4 - Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Keywords: Passivated Implanted Planar Silicon (PIPS) Detector, Silicon Surface Barrier (SSB) Detector, Alpha Particle Detection, Beta Particle Detection, Silicon Detectors, Radiation Detection,
Abstract :
The increasing demand for safety in nuclear facilities necessitates the continuous monitoring of radioactive particles in the air within and around nuclear sites, while potential nuclear incidents require global surveillance. Silicon detectors play a vital role in nuclear and medical measurements, particularly in the precise detection of charged particles such as alpha and beta particles. Two common types of these detectors, namely Silicon Surface Barrier (SSB) detectors and Passivated Implanted Planar Silicon (PIPS) detectors, each have unique advantages and limitations. This study examines the structural and functional characteristics of these two types of detectors, providing a comprehensive comparison in terms of performance, stability under various environmental conditions, and measurement accuracy. The results indicate that PIPS detectors, with their superior thermal and moisture stability, are more suitable for long-term applications. On the other hand, SSB detectors, due to their high sensitivity and rapid response, are better suited for short-term, cost-effective laboratory conditions in certain specific applications. This comparison can assist researchers in selecting the appropriate detector based on specific research needs and environmental conditions.
[1] ش. م. ب. د. س. م. اطهری, "کاربردها، مزایا و معایب آشکارسازهای گالیم آرسناید," فصلنامه علمی- پژوهشی بیولوژی کاربردیpp. 15-38, 5 3 1395.
[2] Knoll, radiation , detection and measurement, Michigan: WILEY, 2010.
[3] P. a. L. C. a. Y. F. a. G. Z. a. G. T. a. Y. L. a. S. L.-J. a. J. H. a. x. X. a. M. N. a. Z. H. a. L. Z. Bao, "Development of large-area quadrant silicon detector for charged particles," Chinese Physics C, vol. 38, 2014.
[4] S. H. P. a. J. H. H. Han Soo Kim, "Characteristics of Silicon Surface Barrier Radiation," Journal of the Korean Physical Societ, pp. 1754-1758, 2008.
[5] T. N. V. ,. H. L. C. Thu Huynh Nguyen Phong, "Efficiency response of an aged PIPS detector used in high-resolution alpha-particle spectrometry," Nuclear Instruments and Methods in Physics, pp. 128-135, 2018.
[6] F.-J. H. P. S. W. M. J. H. S. K. P. S. a. S. O. (. A. Plompen, "Beta-spectroscopy of long lived nuclides with a PIPS detector-setup," in International Conference on Nuclear Data for Science and Technology, Bruges, Belgium, 2017.
[7] J. D. M. F. V. S. H.E. Bosch, "Semiconductor detectors setup for nuclear spectroscopy studies," 1974.
[8] G. Shani, Radiation Dosimetry Instrumentation and Methods, 2000.
[9] G. a. K.-N. H. a. S.-E. W. Pfennig, "Forschungszentrum Karlsruhe GmbH Technik und Umwelt," Chart of the nuclides. 6. ed, 1995.
[10] N.-. K. I.-. F. W. Baig, "Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges," Materials Advances, pp. 1821-1871, 2021.
[11] J. Kemmer, P. Burger, R. Henck and E. Heijne, "Performance and Applications of Passivated Ion-Implanted Silicon Detectors," 1982.
[12] J. a. A. A. Pelletier, "Plasma-based ion implantation and deposition: A review of physics, technology, and applications," Plasma Science, IEEE Transactions on, vol. 33, pp. 1944 - 1959, 2006.
[13] E. M. M. L. G. &. K. M. Fretwurst, "Radiation hardness of silicon detectors for high-energy physics applications.," Journal of Optoerlectronics and Advanced Mateials, pp. 575-588, 2000.
[14] K. K. N. S.M. Sze, Metal-Semiconductor Contacts, 2006.
[15] L. B. a. M. B. a. G. P. a. N. Taccetti, "Application of digital sampling techniques to particle identification in scintillation detectors," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 491, no. 0168-9002, pp. 244-257, 2002.
[16] J. L. ,. H. K. ,. W. Y. K. ,. W. L. Mee Jang, "Design of Radioactive Krypton Detection System using PIPS Detector," Transactions of the Korean Nuclear Society Virtual spring Meeting, 2021.
[17] J.-O. L. J. R. C. E. Gregory Choppin, "Detection and Measurement Techniques," Gregory Choppin, Jan-Olov Liljenzin, Jan Rydberg, Christian Ekberg, pp. 239-295, 2013.
[18] "The Continuous Air Monitoring (CAM) PIPS® Detector," Technologies, Mirion, 2021.
[19] S. Aggarwal, "Alpha-particle spectrometry for the determination of alpha emitting isotopes in nuclear, environmental and biological samples: Past, Present and Future," Anal. Methods, 2016.
[20] N. a. H. C. a. Y. T. a. L. C. a. Z. G. Wang, "Design of a Preamplifier for Silicon Detector Redout Experiment," OALib, vol. 09, pp. 1-9, 2022..
[21] J. a. H. X. a. Q. S. a. Z. Q. a. H. L. Liu, "Development of Low-Noise Charge-Sensitive Preamplifier Based on PIPS Detector," OALib, vol. 07, pp. 1-8, 2020.
[22] I. Mirion Technologies, "mirion," Mirion Technologies, Inc., 2025. [Online]. Available: https://www.mirion.com/faq-for-passivated-implanted-planar-silicon-pips-detectors.