Subject Areas : journal of Artificial Intelligence in Electrical Engineering
1 -
Keywords:
Abstract :
[1] ShinY.-H. et al. “ Hopfield-type neural ordinary differential equation for robust machine learning ”, Pattern Recognit Lett, 2021.
[2] LeiD. et al.” Neural ordinary differential grey model and its applications “ Expert Syst Appl, 2021.
[3] K. Diethelm, “The Analysis of Fractional Differential Equations “, Springer-Verlag, Berlin, 2010.
[4] C. Li and F. Zeng, “ Numerical Methods for Fractional Calculus “, CRC press, New York, 2015.
[5] I. Podlubny, “ Fractional Differential Equations. Academic Press “, San Diego and London, 1999.
[6] Atangana, A.,Baleanu, D., and Alsaed . A.(2016),“Analysis of time-fractional Hunter–Saxton equation: a model of neumatic liquid crystal”inOpen
Phys.,14:145-149,2016.
[7] Khalil, R.,Al Horani, M.,Yousef, A., and Sababheh, M.(2014),“A new definition of fractional derivative, 264 (2014) 65–70.”inJ. Comput. Appl. Math.,264:65-70,2014.
[8] Yusuf, A.,Inc,M., Aliyu, A.I., and Baleanu, D. (2019),“Optical Solitons Possessing Beta Derivative of the ChenLee-Liu Equation in Optical Fibers,”in Front. Phys.,
7:1-7,2019.
[9] Chen, Ricky T. Q.; Rubanova, Yulia; Bettencourt, Jesse; Duvenaud, David K. "Neural Ordinary Differential Equations" In Bengio, (2018).
[10] S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; Garnett, R. (eds.). “ Advances in Neural Information Processing Systems”. Vol. 31. Curran Associates, Inc. arXiv:1806.07366.