Fuzzy Subgroup-Based Centralizer-Graph
Elahe Mohammadzadeh
1
(
)
Mohammad Hamidi
2
(
)
Somayeh Amirmofidi
3
(
)
Keywords: Centralizer-graph, Fuzzy subgroupiod, Good nilpotent fuzzy group, Dominating set.,
Abstract :
In this paper, we introduce the notion of (non)commutative fuzzy subgroup-based centralizer-graph with respect to any given non-abelian group. Basically, we investigate on dominating set of the class of (non)commutative fuzzy subgroup-based centralizer-graphs. Also, with some additional conditions we see that the (non)commutative fuzzy subgroup-based centralizer-graphs are connected. Also, we investigate on isomorphic (non)commutative fuzzy subgroup-based centralizer-graphs and make a new isomorphic graph of (non)abelian groups derived from an isomorphic (non)commutative fuzzy subgroup-based centralizer-graph. Also, we see that if any given underlined fuzzy subset is an extra-special fuzzy subgroup, then the related fuzzy subgroup-based centralizer-graphs are isomorphic and if any given underlined fuzzy subset is good nilpotent of class 2, then it is an extra-special fuzzy subgroup.
[1] Zadeh LA. Fuzzy sets. Information and Control. 1965; 8(3): 338-353. DOI: https://doi.org/0.1016/S0019- 9958(65)90241-X
[2] Rosenfeld A. Fuzzy groups. Journal of Mathematical Analysis and Applications. 1971; 35(3): 512-517. DOI: https://doi.org/10.1016/0022-247X(71)90199-5
[3] Rasoulzadeh M, Edalatpanah SA, Fallah M, Najafi SE. A hybrid model for choosing the optimal stock portfolio under intuitionistic fuzzy sets. Iranian Journal of Fuzzy Systems. 2024; 21(2): 161-179. DOI: https://doi.org/10.22111/IJFS.2024.45118.7968
[4] Smarandache F. Extension of soft set to hypersoft set, and then to plithogenic hypersoft set. Neutrosophic Sets and Systems. 2018; 22: 168-170.
[5] Kaufmann A. Introduction à la théorie des sous-ensembles flous à l’usage des ingénieurs: Éléments théoriques de base. Paris: Masson et Cie; 1973.
[6] Ameri R, Borzooei RA, Mohammadzadeh E. Engel fuzzy subgroups. Italian Journal of Pure and Applied Mathematics. 2015; 34: 251-262.
[7] Davvaz B. Polygroup theory and related system. Washington: World scientific; 2012. DOI: https://doi.org/10.1142/8593
[8] Mohammadzadeh E, Hamidi M, Aminmofidi S. Commutators-based graph in polygroup. Journal of Mahani Mathematical Research. 2024; 13(4): 39-52. DOI: https://doi.org/10.22103/JMMR.2024.22105.1501
[9] Nasiri M, Erfanian A, Ganjali M, Jafarzadeh A. Isomorphic g-noncommuting graph finite groups. Publicationes Mathematicae Debrecen. 2017; 91/1-2: 33-42. DOI: https://doi.org/10.5486/PMD.2017.7577
[10] Dogra S, Pal M. Picture fuzzy subgroup. Kragujevac Journal of Mathematics. 2023; 47(6): 911-933. DOI: https://doi.org/10.46793/KgJMat2306.911D
[11] Paryzad B, Eshghi K. A new approach in fuzzy optimization of time-cost-quality trade-off problem. Journal of Optics . 2024; 1(1): 34-45. DOI: https://doi.org/10.22105/opt.v1i1.42
[12] Hamidi M, Jahanpanah S, Radfar A. Extended graphs based on KMfuzzy metric spaces. Iranian Journal of Fuzzy Systems. 2020; 17(5): 81-95. DOI: https://doi.org/10.22111/IJFS.2020.5517
[13] Hamidi M, Smarandache F, Taghinezhad M. Decision making based on valued fuzzy superhypergraphs. Computer Modeling in Engineering and Sciences. 2024; 138(2): 1907-1923. DOI: https://doi.org/10.32604/cmes.2023.030284
[14] Hamidi M, Taghinezhad M. Application of superhypergraphs-based domination number in real world. Journal of Mahani Mathematical Research. 2023; 13(1): 210-228. DOI: https://doi.org/10.22103/jmmr.2023.21203.1415
[15] Sezgin A, Onur B. Soft intersection almost bi-ideals of semigroups. Systemic Analytic. 2024; 2(1): 95-105. DOI: https://doi.org/10.31181/sa21202415
[16] Nguyen HT, Walker C, Walker EA. A first course in fuzzy logic. 4th edition. Boca Raton: Taylor & Francis, CRC Press; 2018. DOI: https://doi.org/10.1201/9780429505546
[17] Mondeson JN, Bhutani KR, Rosenfeld A. Fuzzy group theory. Berlin: Springer; 2005. DOI: https://doi.org/10.1007/b12359
[18] Suzuki M. Group theory I. Berlin: Springer; 1982. DOI: https://doi.org/10.1007/978-3-642-61804-8
[19] Mohammadzadeh H, Borzooei RA. Nilpotent fuzzy subgroups. Mathematics. 2018; 6(2): 1-12. DOI: https://doi.org/10.3390/math6020027