Subject Areas : International Journal of Finance, Accounting and Economics Studies
Shohreh Zakaei 1 , Mohammadreza Sanaei 2 , Akbar Mirzapour Babajan 3
1 -
2 -
3 -
Keywords:
Abstract :
Aranha, C., & Iba, H. (2009). The memetic tree-based genetic algorithm and its application to portfolio optimization. Memetic Computing, 1(2), 139-151.
Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust portfolio optimization and management. John Wiley & Sons.
Karaboga, D., & Gorkemli, B. (2014). A quick artificial bee colony (qABC) algorithm and its performance on optimization problems. Applied Soft Computing, 23, 227-238.
Markowitz, H. (1959). Portfolio selection.
Di Tollo, G., & Roli, A. (2008). Metaheuristics for the portfolio selection problem. International Journal of Operations Research, 5(1), 13-35.
Streichert, F., Ulmer, H., and Zell, A. (2004). “Comparing discrete and continuous genotypes on the constrained portfolio selection problem”. Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, Washington, USA, pp. 1239-1250.
Armañanzas, R. and Lozano, J.A. (2005). “A multiobjective approach to the portfolio optimization problem”. Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, pp.1388-1395.
Ehrgott, M., Klamroth, K., and Schwehm, C. (2004). “An MCDM approach to portfolio optimization”. European Journal of Operational Research, 155(3), pp. 752-770.
Subbu, R., Bonissone, P., Eklund, N., Bollapragada, S., and Chalermkraivuth K. (2005). “Multiobjective financial portfolio design: A hybrid evolutionary approach”. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2005), Munich, Germany, pp.1722-1729.
Ong, C.-S., Huang, J.-J., and Tzeng, G.-H. (2005). “A novel hybrid model for portfolio selection”. Applied Mathematics and Computation, 169, 1195-1210.
Konno, H. and Yamazaki, H. (1991). Mean absolute deviation portfolio optimization model and its applications to Tokyo stock market”. Management Science, 37, 519-531.
Speranza, M.-G. (1996). “A heuristic algorithm for a portfolio optimization model applied to the Milan stock market”. Computers & Operations Research, 23(5), 433-441.
Gilli, M., Këllezi, E., and Hysi, H. (2006). “A data-driven optimization heuristic for downside risk minimization”. The Journal of Risk, 3, 1-19.
Chang, T.-J., Meade, N., Beasley, J.-E., and Sharaiha Y.-M. (2000). “Heuristics for cardinality constrained portfolio optimization”. Computers & Operations Research, 27(13), 1271-1302.
Xia, Y.-S., Liu, B.-D., Wang, S., and Lai, K.-K. (2000). “A model for portfolio selection with order of expected returns”. Computers & Operations Research, 27(5), 409-422.
Kellerer, H. and Maringer, D. (2003). “Optimization of cardinality constrained portfolios with a hybrid local search algorithm”. OR Spectrum, 25(4), 481-495.
Rolland, E. (1997). “A tabu search method for constrained real number search: Applications to portfolio selection”. Technical report, Department of Accounting and Management Information Systems, Ohio State University, Columbus, Ohio.
Chang, T. J., Yang, S. C., & Chang, K. J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with applications, 36(7), 10529-10537.
Ma, X., Gao, Y., & Wang, B. (2012). Portfolio optimization with cardinality constraints based on hybrid differential evolution. AASRI Procedia, 1, 311-317.
Chen, W. (2015). Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem. Physica A: Statistical Mechanics and its Applications, 429, 125-139.
Ruiz-Torrubiano, R., & Suárez, A. (2015). A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs. Applied Soft Computing, 36, 125-142.