High sensitivity surface plasmon resonance sensor based on D-shaped photonic crystal fiber using Ag/α-Fe2O3
Subject Areas : Journal of Optoelectronical Nanostructures
Seyed Hossein Moayed
1
,
Mojtaba Sadeghi
2
,
Zahra Adelpour
3
1 -
2 - Department of Electrical Engineering, Shi.C., Islamic Azad University, Shiraz, Iran
3 -
Keywords: Photonic crystal fiber, plasmonic, nano sensor, surface plasmon polariton.,
Abstract :
In the present study an ultra-high sensitive optical fiber Surface Plasmon Resonance (SPR) sensor is proposed, where the sensor is based on a D-shaped fiber with a nanolayer coating of Silver (Ag) and Hematite (α−Fe2O3). The Ag/α−Fe2O3 layer is deposited on the longitudinal surface of residual cladding. The α−Fe2O3 layer protects the Ag layer from oxidation and effectively enhances the surface plasmon wave while interacting with free electrons. In this structure, free electrons on the metal surface were stimulated via evanescent waves on the fibre surface to generate surface plasmon waves.Finite Element Method (FEM) modeling is employed to investigate the refractive index (RI) response of the SPR sensor. The resonance absorption peaks were monitored to determine the changes in refractive index (RI). The SPR sensor exhibits an ultra-high RI sensitivity of 9200 nm/RIU (refractive index unit) in the RI range of 1.33 to 1.41. The SPR performance suggests that it is a potential candidate for various applications of sensing such as biosensors and chemical sensing.
Khalil Tamersit and Fayc¸al Djeffal. Double-gate graphene nanoribbon field-effect transistor for dna and gas sensing applications: simulation study and sensitivity analysis. IEEE Sensors Journal, 16(11) (2016, Apr.) 4180–4191.
J. Homola and Marek Piliarik. Surface plasmon resonance (spr) sensors. In Surface plasmon resonance based sensors, 2nd ed., vol. 4, Berlin,Heidelberg: Springer, 2006, 45–67.
A. E. Khalil , A. El-Saeed, M. A. Ibrahim, M. E. Hashish, M. Abdelmonem, M. Hameed, M. Y. Azab and S. Obayya. Highly sensitive photonic crystal fiber biosensor based on titanium nitride. Optical and Quantum Electronics, 50(1) (2018, Mar.) 1-12.
H. E. De Bruijn, R. P. H. Kooyman, and J. Greve, Choice of metal and wavelength for surface-plasmon resonance sensors: Some considerations. Appl. Opt., 31(4) (1992, Feb.) 440–442.
A. Yasli, H. Ademgil, S. Haxha, A. Aggoun. Multi-channel photonic crystal fiber based surface plasmon resonance sensor for multi-analyte sensing. IEEE Photonics Journal, 2012(1) (2019, Dec.) 1-5.
F. Meng, H. Wang, D. Fang. Research on D-shape open-loop PCF temperature refractive index sensor based on SPR effect. IEEE Photonics Journal. 12;14(3) (2022,Apr.) 1-5.
V. Sorathiya, S. Lavadiya, O. Faragallah, M. Eid, A. Rashed. D shaped dual core photonics crystal based refractive index sensor using graphene–titanium–silver materials for infrared frequency spectrum. Optical and Quantum Electronics. 54(5) (2022 May.) 290.
F. Wang, Y. Wei, Y. Han. High sensitivity and wide range refractive index sensor based on surface plasmon resonance photonic crystal fiber. Sensors. 23(14) (2023, Jul.) 6617.
J. Divya, S. Selvendran, AS. Raja, V. Borra. Novel Plasmonic Sensor Based on Dual-Channel D-Shaped Photonic Crystal Fiber for Enhanced Sensitivity in Simultaneous Detection of Different Analytes. IEEE Transactions on NanoBioscience. 2024.
R. Pravesh, D. Kumar, BP. Pandey, VS. Chaudhary, S. Kumar. Design and analysis of a double D-shaped dual core PCF sensor for detecting biomolecules in the human body. IEEE Sensors Journal. (2024, Mar.).
F. Mumtaz, M. Roman, B. Zhang, LG. Abbas, MA. Ashraf, MA. Fiaz, Y. Dai, J. Huang. A simple optical fiber SPR sensor with ultra-high sensitivity for dual-parameter measurement. IEEE Photonics Journal. 14(5) (2022, Sep.) 1-7.
RA. Kadhim, L. Yuan, H. Xu, J. Wu, Z. Wang. Highly sensitive D-shaped optical fiber surface plasmon resonance refractive index sensor based on Ag-α-Fe 2 O 3 grating. IEEE Sensors Journal. 20(17) (2020, May) 9816-24.
KK. Zhang, YY. Wang, Q. Wang, HY. Wang, YZ. Qian, DY. Zhang, YY. Xue, S. Li, L. Zhang. Sensitive monitoring of refractive index by surface plasmon resonance (SPR) with a gold α-iron (III) oxide thin film. Instrumentation Science & Technology. 51(5) (2023, Sep.) 558-73.
S. Ullah, H. Chen, P. Guo, M. Song, S. Zhang, L. Hu, S. Li. A Highly Sensitive D-Shaped PCF-SPR Sensor for Refractive Index and Temperature Detection. Sensors. 24(17) (2024,Aug.) 5582.
S. Singh, B.D. Gupta. Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites. Measurement Science and Technology, 21(11): (2010, Sep.) 115202.
P. Kumar, N. Rawat, D. Hang, H. Lee, R. Kumar. Controlling band gap and refractive index in dopant-free α-Fe 2 O 3 films. Electronic Materials Letters. 11 (2015, Jan.) 13-23.
A. Elouafi, R. Moubah, A. Tizliouine, S. Derkaoui, L.H. Omari,H. Lassri. Effects of Ru doping and of oxygen vacancies on the optical properties in α-Fe 2 O 3 powders. Applied Physics A, 126 (2020, Mar.) 1-7.
M.F. Al-Kuhaili, M. Saleem, S. M. Durrani. Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron. Journal of alloys and compounds. 521 (2012,Apr.) 178-182.
Y. Wang, S. Li, J. Li, Z. Zhang, S. Zhang, J. Wu, J. High-sensitivity photonic crystal fiber refractive index sensor based on directional coupler. Optical Fiber Technology. 49 (2019, May.) 16-21.
M. F. Majeed, A. K. Ahmad. Design and analysis of a high sensitivity open microchannel PCF-based surface plasmon resonance refractometric sensor. Optical Materials. 147 (2024, Jan.) 114617.
A. M. Tuaimah, S. R. Tahhan, H. J. Taher, K. Ahmed, F. A. Al-Zahrani. Multi analyte detection based on D-shaped PCF sensor for glucose concentrations sensing. Optical and Quantum Electronics, 56(3) (2024, Mar.) 319.
M. R. Sardar, M. Faisal. Dual-core dual-polished pcf-spr sensor for cancer cell detection. IEEE Sensors Journal. (2024).
M. R. Islam, A. A. Hassan, S. Shahriar, S. T. Adiba, F. S. Rahman, S. Zaman, M. A. Al Hosain. A unique wheel-shaped exposed core LSPR-PCF sensor for dual-peak sensing: Applications in the optical communication bands, M-IR region and biosensing. Heliyon, 10(13) (2024, Jul.)
J. Lu, Y. Li, Han, Y. Liu, J. Gao. D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating. Applied optics, 57(19) (2018, Jul.) 5268-5272.
I. S. Amiri, S. A. Alwi, S. A. Raya, N. A. Zainuddin, N. Rohizat, M. Rajan, R. Zakaria. Graphene oxide effect on improvement of silver surface plasmon resonance D-shaped optical fiber sensor. Journal of Optical Communications, 44(1) (2023, Jan.) 53-60.
C. Liu, T. Shen, H. Liang, J. Chen, T. Yang. Surface plasmon resonance refractive index sensor based on photonic crystal fiber with silver film and titanium dioxide film. In 2021 IEEE 6th Optoelectronics Global Conference (OGC) 47-51.
Islamic Azad University | Journal of Winter 2024 / Vol. 6, No. 1 |
|
Research Paper
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
High sensitivity surface plasmon resonance sensor based on D-shaped photonic crystal fiber using Ag/α-Fe2O3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Seyed Hossein Moayed1, Mojtaba Sadeghi*,1, Zahra adelpour1 1 Department of Electrical Engineering, Shi.C., Islamic Azad University, Shiraz, Iran
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Received: Revised: Accepted: Published:
| Abstract: In the present study, an ultrahigh-sensitivity photonic crystal fiber(PCF) sensor which works based on the surface plasmon resonance (SPR) phenomenon is proposed. The structure is cut into a D-shape and two layers of Ag and hematite (
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Use your device to scan and read the article online
DOI:
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Keywords: Photonic crystal fiber, plasmonic, nano sensor, surface plasmon polariton. |
Symbol | Parameter | Quantity (µm) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
d1 | Diameter of large rods | 1.4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
d2 | Small rod diameter | 0.7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
d3 | Fiber diameter (internal) | 10 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Pitch | 3.5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
tAg | Thickness of the silver layer | 0.05 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
t( | Thickness of | 0.015 |
(1) |
|
(2) |
|
(3) |
|
(4) |
|
(5)
|
| |||||
(6) |
|
(7)
|
|
(8)
|
|
(9) |
|
(10) |
|
(11) |
|
|
| |||||
t(Ag) = 60nm | t(Ag) = 55nm | t(Ag) = 50nm | t(Ag) = 45nm | |||
8320 | 8100 | 7900 | 7500 |
| ||
8800 | 8600 | 8550 | 8300 |
| ||
9400 | 9300 | 9200 | 8950 |
| ||
9600 | 9580 | 9520 | 9460 |
|
FOM ( | FWHM (nm) | Resolution (RIU) | Sensitivity ( | Loss ( | Resonance wavelength (nm) |
RI |
- | 21 | - | - | 22.4 | 677 | 1.33 |
87.5 | 24 |
| 2100 | 24.9 | 698 | 1.34 |
96.7 | 31 |
| 3000 | 27.6 | 728 | 1.35 |
97 | 33 |
| 3200 | 32.6 | 760 | 1.36 |
100 | 40 |
| 4000 | 34.7 | 800 | 1.37 |
100 | 43 |
| 4300 | 37 | 843 | 1.38 |
102 | 46 |
| 4700 | 41.5 | 890 | 1.39 |
103 | 49 |
| 5000 | 46.7 | 940 | 1.40 |
150.8 | 61 |
| 9200 | 55.3 | 1032 | 1.41 |
Resolution [RIU] |
[ | RI Range | Sensor structure | Year/Ref. |
| 3340 | 1.36-1.38 | D-type PCF based plasmonic (gold) | 2018[29] |
| 6400 | 1.33-1.39 | D-Shaped optical fiber SPR sensor grating( | 2020[18] |
| 7400 | 1.36-1.41 | D-type PCF based plasmonic (silver) | 2021/[30] |
- | 5100 | 1.35-1.40 | D-type PCF based plasmonic (gold) | 2022[12] |
- | 8518 | 1.33-1.4 | Optical fiber SPR sensor( | 2022[17] |
- | 833.33 | 1.30-1.34 | D-type optical fiber based plasmonic (silver-graphene oxide) | 2023[31] |
| 9217 | 1.41-1.58 | PCF based plasmonic | 2023[16] |
- | 4800 | 1.33-1.38 | Optical fiber SPR sensor( | 2023/[19] |
- | 7500 | 1.33-1.40 | Dual core D-Shaped PCF sensor | 2024[15] |
| 9200 | 1.33-1.41 | Optical fiber SPR sensor( | Our research |