Mapping the Knowledge Landscape of Machine Learning in Portfolio Optimization: A Bibliometric Analysis of Asset Allocation Research
Subject Areas : Financial and Economic Modelling
Mahsa Safavi Iranji
1
,
Mojgan Safa
2
,
Majid Zanjirdar
3
,
Hossein Jahangirnia
4
1 -
2 -
3 -
4 -
Keywords: Asset Allocation, Bibliometric Analysis , Machine Learning , Portfolio Optimization,
Abstract :
This study investigates the bibliometric analysis on asset allocation for portfolio optimization using machine learning algorithms. The primary objective is to identify and analyze the scientific literature through bibliometric analysis to uncover key themes, authors, sources, highly-cited articles, and countries involved in portfolio management research. To achieve this, 304 articles indexed in Scopus and Web of Science from 1990 to 2023 were analyzed. Using RStudio software, the study highlights various models employed in this field, along with tables, graphs, maps, and key performance metrics related to article production and citation impact. The findings reveal an upward trend in the use of machine learning for optimal portfolio management, asset allocation, and risk management since 2016. Additionally, the United States and China emerged as leading contributors to this literature. The results provide practical insights for market participants, especially those in fintech and finance sectors, to identify optimal machine learning solutions for decision-making processes. These findings also guide students in focusing their research efforts on underexplored areas within this domain.
[1] De Prado, M.M.L. Machine learning for asset managers, Cambridge University Press, 2020. doi: https://doi.org/10.1017/9781108883658
[2] Zamanpour,A., Zanjirdar, M., Davodi Nasr,M, Identify and rank the factors affecting stock portfolio optimization with fuzzy network analysis approach, Financial Engineering And Portfolio Manage-ment,2021;12(47): 210-236
[3] Zapata, H.O., Mukhopadhyay, S. A Bibliometric Analysis of Machine Learning Econometrics in Asset Pricing, Journal of Risk and Financial Management, 2022; 15(11):535. doi: https://doi.org/10.3390/jrfm15110535
[4] Ahmed, S., Alshater, M.M., El Ammari, A., Hammami, H. Artificial intelligence and machine learning in finance: A bibliometric review, Research in International Business and Finance, 2022; 61:101646. doi: https://doi.org/10.1016/j.ribaf.2022.101646
[5] Vo, N.N., He, X., Liu, S., Xu, G. Deep learning for decision making and the optimization of socially responsible investments and portfolio, Decision Support Systems, 2019; 124:113097. doi: https://doi.org/10.1016/j.dss.2019.113097
[6] Ozbayoglu, A.M., Gudelek, M.U., Sezer, O.B. Deep learning for financial applications: A survey, Ap-plied Soft Computing, 2020; 93:106384. doi: https://doi.org/10.48550/arxiv.2002.05786
[7] Lakzaie, F., Bahiraie, A., & Mohammadian, S. Visualized portfolio optimization of stock market: Case of TSE. Advances in Mathematical Finance and Applications, 2024; 2:707-722. doi: https://doi.org/https://doi.org/10.71716/amfa.2024.2301-1853
[8] Zanjirdar, M. Overview of portfolio optimization models, Advances in Mathematical Finance and Ap-plications, 2020; 5(4):419-435. doi: https://doi.org/10.22034/amfa.2020.674941
[9] Lopez de Prado, M. A robust estimator of the efficient frontier, SSRN, 2016. doi: https://doi.org/10.2139/ssrn.3469961
[10] Schwendner, P., Papenbrock, J., Jaeger, M., Krügel, S. ‘Adaptive Seriational Risk Parity’ and Other Extensions for Heuristic Portfolio Construction Using Machine Learning and Graph Theory, The Journal of Financial Data Science, 2021; 3(4):65-83. doi: https://doi.org/10.3905/jfds.2021.1.078
[11] Chen, W., Zhang, H., Mehlawat, M.K., Jia, L. Mean–variance portfolio optimization using machine learning-based stock price prediction, Applied Soft Computing, 2021; 100:106943. doi: https://doi.org/10.1016/j.asoc.2020.106943
[12] Wang, W., Li, W., Zhang, N., Liu, K. Portfolio formation with preselection using deep learning from long-term financial data, Expert Systems with Applications, 2020; 143:113042. doi: https://doi.org/10.1016/j.eswa.2019.113042
[13] Demey, P., Maillard, S., Roncalli, T. Risk-based indexation, Available at SSRN 1582998, 2010. doi: https://doi.org/10.2139/ssrn.1582998
[14] Choueifaty, Y. Towards maximum diversification, Available at SSRN 4063676, 2008. doi: https://doi.org/10.2139/ssrn.4063676
[15] Ferretti, S. On the modeling and simulation of portfolio allocation schemes: An approach based on network community detection, Comput. Econ, 2022; 1-37. doi: https://doi.org/10.48550/arxiv.2203.11780
[16] Ernst, P., Thompson, J., Miao, Y. Portfolio selection: The power of equal weight, arXiv preprint arXiv:1602.00782, 2016. doi: https://doi.org/10.48550/arxiv.2309.13696
[17] Tatsat, H., Puri, S., Lookabaugh, B. Machine Learning and Data Science Blueprints for Finance, O'Reilly Media, 2020.
[18] Gokhale, A., Mulay, P., Pramod, D., Kulkarni, R. A bibliometric analysis of digital image forensics, Sci. Technol. Libr, 2020; 39(1):96-113. doi: https://doi.org/10.1080/0194262X.2020.1714529
[19] Roemer, R. C., Borchardt, R. Meaningful metrics: A 21st century librarian's guide to bibliometrics, altmetrics, and research impact, Amer Library Assn, 2015. doi: https://doi.org/10.7710/2162-3309.2290
[20] Nourahmadi, M., Rasti, F., Sadeghi, H. A Review of Research on Clustering of Financial Time Series: A Knowledge Mapping Approach, Financ. Invest. Adv, 2021; 2(2):23-57. [In Persian] doi: https://doi.org/10.30495/afi.2021.1919857.1002
[21] Milian, E. Z., Spinola, M. d. M., de Carvalho, M. M. Fintechs: A literature review and research agenda, Electron. Commer. Res. Appl, 2019; 34:100833. doi: https://doi.org/10.1016/j.elerap.2019.100833
[22] Blanco-Mesa, F., Merigó, J. M., Gil-Lafuente, A. M. Fuzzy decision making: A bibliometric-based review, J. Intell. Fuzzy Syst, 2017; 32(3):2033-2050. doi: https://doi.org/10.3233/jifs-161640
[23] Martínez-López, F. J., Merigó, J. M., Valenzuela-Fernández, L., Nicolás, C. Fifty years of the Europe-an Journal of Marketing: A bibliometric analysis, Eur. J. Mark, 2018; 52(1-2):439-468. doi: https://doi.org/10.1108/ejm-11-2017-0853
[24] Mas-Tur, A., Modak, N. M., Merigó, J. M., Roig-Tierno, N., Geraci, M., Capecchi, V. Half a century of Quality & Quantity: A bibliometric review, Qual. Quant, 2019; 53:981-1020. doi: https://doi.org/10.1007/s11135-018-0799-1
[25] Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W. M. How to conduct a bibliometric analy-sis: An overview and guidelines, J. Bus. Res, 2021; 133:285-296. doi: https://doi.org/10.1016/j.jbusres.2021.04.070
[26] Small, H. Visualizing science by citation mapping, J. Am. Soc. Inf. Sci, 1999; 50(9):799-813. doi: https://doi.org/10.1002/%28sici%291097-4571%281999%2950%3A9%3C799%3A%3Aaid-asi9%3E3.0.co%3B2-g
[27] Cobo, M. J., López‐Herrera, A. G., Herrera‐Viedma, E., Herrera, F. Science mapping software tools: Review, analysis, and cooperative study among tools, J. Am. Soc. Inf. Sci. Technol, 2011; 62(7):1382-1402. doi: https://doi.org/10.1002/asi.21525
[28] Heradio, R., De La Torre, L., Galan, D., Cabrerizo, F. J., Herrera-Viedma, E., Dormido, S. Virtual and remote labs in education: A bibliometric analysis, Comput. Educ, 2016; 98:14-38. doi: https://doi.org/10.1016/j.compedu.2016.03.010
[29] Danvila-del-Valle, I., Estévez-Mendoza, C., Lara, F. J. Human resources training: A bibliometric analysis, J. Bus. Res, 2019; 101:627-636. doi: https://doi.org/10.1016/j.jbusres.2019.02.026
[30] Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses, FASEB J, 2008; 22(2):338-342. doi: https://doi.org/10.1096/fj.07-9492lsf
[31] Aria, M., Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis, J. In-formetr, 2017; 11(4):959-975
[32] Wang, Y. Research on supply chain financial risk assessment based on blockchain and fuzzy neural networks, Wirel. Commun. Mob. Comput, 2021; 2021:1-8. doi: https://doi.org/10.1155/2021/5565980
[33] Zheng, J., Wang, Y., Li, S., Chen, H. The stock index prediction based on SVR model with bat optimi-zation algorithm, Algorithms, 2021; 14(10):299. doi: https://doi.org/10.3390/a14100299
[34] Song, Z., Wang, Y., Qian, P., Song, S., Coenen, F., Jiang, Z., Su, J. From deterministic to stochastic: an interpretable stochastic model-free reinforcement learning framework for portfolio optimization, Appl. Intell, 2022; 1-16. doi: https://doi.org/10.1007/s10489-022-04217-5
[35] Chen, B., Zhong, J., Chen, Y. A hybrid approach for portfolio selection with higher-order moments: Empirical evidence from Shanghai Stock Exchange, Expert Syst. Appl, 2020; 145:113104. doi: https://doi.org/10.1016/j.eswa.2019.113104
[36] Rojas-Sánchez, M.A., Palos-Sánchez, P.R., Folgado-Fernández, J.A. Systematic literature review and bibliometric analysis on virtual reality and education, Educ. Inf. Technol, 2023; 28(1):155-192. doi: https://doi.org/10.1007/s10639-022-11167-5
[37] Barboza, F., Kimura, H., Altman, E. Machine learning models and bankruptcy prediction, Expert Syst. Appl, 2017; 83:405-417. doi: https://doi.org/10.1016/j.eswa.2017.04.006
[38] Huang, C.-F. A hybrid stock selection model using genetic algorithms and support vector regression, Appl. Soft Comput, 2012; 12(2):807-818. doi: https://doi.org/10.1016/j.asoc.2011.10.009
[39] Ghoddusi, H., Creamer, G.G., Rafizadeh, N. Machine learning in energy economics and finance: A review, Energy Econ, 2019; 81:709-727. doi: https://doi.org/10.1016/j.eneco.2019.05.006
[40] Briand, L.C., Morasca, S., Basili, V.R. Property-based software engineering measurement, IEEE Trans. Softw. Eng, 1996; 22(1):68-86. doi: https://doi.org/10.1109/32.481535
[41] Henrique, B.M., Sobreiro, V.A., Kimura, H. Stock price prediction using support vector regression on daily and up to the minute prices, J. Finance Data Sci, 2018; 4(3):183-201. doi: https://doi.org/10.1016/j.jfds.2018.04.003
[42] Groth, S.S., Muntermann, J. An intraday market risk management approach based on textual analysis, Decis. Support Syst, 2011; 50(4):680-691. doi: https://doi.org/10.1016/j.dss.2010.08.019
[43] Ban, G.-Y., El Karoui, N., Lim, A.E. Machine learning and portfolio optimization, Manage. Sci, 2018; 64(3):1136-1154. doi: https://doi.org/10.1287/mnsc.2016.2644
[44] Paiva, F.D., Cardoso, R.T.N., Hanaoka, G.P., Duarte, W.M. Decision-making for financial trading: A fusion approach of machine learning and portfolio selection, Expert Syst. Appl, 2019; 115:635-655. doi: https://doi.org/10.1016/j.eswa.2018.08.003
[45] Soundararajan, K., Ho, H.K., Su, B. Sankey diagram framework for energy and exergy flows, Appl. Energy, 2014; 136:1035-1042. doi: https://doi.org/10.1016/j.apenergy.2014.08.070
[46] Xie, H., Zhang, Y., Wu, Z., Lv, T. A bibliometric analysis on land degradation: Current status, devel-opment, and future directions, Land, 2020; 9(1):28. doi: https://doi.org/10.3390/land9010028
[47] Altınay Özdemir, M., Göktaş, L.S. Research trends on digital detox holidays: A bibliometric analysis, 2012-2020, 2021. doi: https://doi.org/10.18089/tms.2021.170302
[48] Guo, Y.-M., Huang, Z.-L., Guo, J., Li, H., Guo, X.-R., Nkeli, M.J. Bibliometric analysis on smart cities research, Sustainability, 2019; 11(13):3606. doi: https://doi.org/10.3390/su11133606
[49] Zhou, W., Zhu, W., Chen, Y., Chen, J. Dynamic changes and multi-dimensional evolution of portfolio optimization, Econ. Res.-Ekonomska Istraživanja, 2022; 35(1):1431-1456. doi: https://doi.org/10.1080/1331677x.2021.1968308
[50] Asawa, Y.S. Modern Machine Learning Solutions for Portfolio Selection, IEEE Eng. Manag. Rev, 2021; 50(1):94-112. doi: https://doi.org/10.1109/emr.2021.3131158
[51] Ciciretti, V., Bucci, A. Building optimal regime-switching portfolios, N. Am. J. Econ. Finance, 2023; 64:101837. doi: https://doi.org/10.1016/j.najef.2022.101837
[52] Lim, T., Ong, C.S. Portfolio management: A financial application of unsupervised shape-based clus-tering-driven machine learning method, Int. J. Comput. Digit.
[53] Duarte, F. G., & de Castro, L. N. A fuzzy clustering algorithm for portfolio selection. 2019 IEEE 21st Conference on Business Informatics (CBI), 2019. doi: https://doi.org/10.1109/cbi.2019.00054
[54] Duarte, F. G., & De Castro, L. N. A framework to perform asset allocation based on partitional clus-tering. IEEE Access, 2020; 8:110775-110788. doi: https://doi.org/10.1109/access.2020.3001944
[55] Koratamaddi, P., Wadhwani, K., Gupta, M., & Sanjeevi, S. G. Market sentiment-aware deep rein-forcement learning approach for stock portfolio allocation. Engineering Science and Technology, an In-ternational Journal, 2021; 24(4):848-859. doi: https://doi.org/10.1016/j.jestch.2021.01.007
[56] Ma, Y., Han, R., & Wang, W. Portfolio optimization with return prediction using deep learning and machine learning. Expert Systems with Applications, 2021; 165:113973. doi: https://doi.org/10.1016/j.eswa.2020.113973
[57] Du, J. Mean–variance portfolio optimization with deep learning based-forecasts for cointegrated stocks. Expert Systems with Applications, 2022; 201:117005. doi: https://doi.org/10.1016/j.eswa.2022.117005
[58] Kwak, Y., Song, J., & Lee, H. Neural network with fixed noise for index-tracking portfolio optimiza-tion. Expert Systems with Applications, 2021; 183:115298. doi: https://doi.org/10.1016/j.eswa.2021.115298
[59] Rubesam, A. Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market. Emerging Markets Review, 2022; 51:100891. doi: https://doi.org/10.1016/j.ememar.2022.100891
[60] Durall, R. Asset Allocation: From Markowitz to Deep Reinforcement Learning. arXiv preprint arXiv:2208.07158, 2022. doi: https://doi.org/10.48550/arxiv.2208.07158
[61] Jang, J., & Seong, N. Deep reinforcement learning for stock portfolio optimization by connecting with modern portfolio theory. Expert Systems with Applications, 2023; 119556. doi: https://doi.org/10.1016/j.eswa.2023.119556
[62] Yun, H., Lee, M., Kang, Y. S., & Seok, J. Portfolio management via two-stage deep learning with a joint cost. Expert Systems with Applications, 2020; 143:113041. doi: https://doi.org/10.1016/j.eswa.2019.113041
[63] Chakravorty, G., Awasthi, A., & Da Silva, B. Deep learning for global tactical asset allocation. Avail-able at SSRN 3242432, 2018. doi: https://doi.org/10.2139/ssrn.3242432
[64] Mohamadi,M., Zanjirdar,M., On the Relationship between different types of institutional owners and accounting conservatism with cost stickiness, Journal of Management Accounting and Auditing Knowledge, 2018;7(28): 201-214
[65] Zanjirdar, M., Moslehi Araghi, M., The impact of changes in uncertainty, unexpected earning of each share and positive or negative forecast of profit per share in different economic condition, Quarterly Journal of Fiscal and Economic Policies,2016;4(13): 55-76.
[66] Nikumaram, H., Rahnamay Roodposhti, F., Zanjirdar, M., The explanation of risk and expected rate of return by using of Conditional Downside Capital Assets Pricing Model, Financial knowledge of securities analysis,2008;3(1):55-77