Construction and Assessment of Brass (CuZn30)/Low carbon Steel/Brass /Brass (CuZn30) thin Film Metal Composite in Wear Resistance, Microstructural and Mechanical Properties, Incorporating Consideration of the Impact of Annealing Temperature
Subject Areas :
Seyed Mostafa Mirtabaei
1
,
Farid Bagherpoor
2
1 -
2 -
Keywords: Brass (CuZn30) /Low Carbon Steel/Brass (CuZn30) Composite, Thin Metal Composite, Annealing Temperature, Cold Rolling, Mechanical Properties ,
Abstract :
Manufacturing thin metal multi-layer composites and enhancing their mechanical properties are challenging tasks. In this study, a thin-layer metal composite (500 μm) consisting of brass/ST14/brass was fabricated using the cold rolling bonding (CRB) method. To optimize its mechanical characteristics, the composite was subsequently annealed at temperatures of 450°C, 600°C, and 750°C. The resulting samples were evaluated in terms of tensile strength, microhardness, formability, wear resistance, and surface morphology using SEM/BSE imaging. The results indicated that the sample annealed at 750°C exhibited the highest formability but the lowest tensile strength and wear resistance (i.e., greatest weight loss). In contrast, the unannealed sample showed the highest tensile strength and wear resistance, but the lowest formability. Among all treatments, annealing at 600°C provided the best overall balance of mechanical performance, demonstrating superior formability, tensile strength, and wear resistance. Therefore, it can be concluded that annealing at 600°C represents the optimal treatment for the brass/ST14/brass composite in this study.
[1] Vijaya Ramnath, B., Parswajinan, R., Dharmaseelan, K., Thileepan, K. and Nithin Krishna,K. 2021. A review on aluminium metal matrix composites. Materials Today: Proceedings. 46 : 4341-4343. doi:10.1016/j.matpr.2021.03.600.
[2] Sarmah, P. and Gupta, K. 2024. Recent Advancements in Fabrication of Metal Matrix Composites: A Systematic Review. Materials. 17(18):4635. doi:10.3390/ma17184635.
[3] Ikumapayi, O.M., Akinlabi, E.T., Onu, P. and Abolusoro, O.P. 2020. Rolling operation in metal forming: Process and principles . A brief study, Materials Today: Proceedings. 26 :1644-1649. doi:10.1016/j.matpr.2020.02.343.
[4] Soleimanimehr, H. and Nasrollah, A. 2021. A Numerical Investigation the Effects of the Voltage on the Displacement and Stress of Copper-based Ionic Polymer-Metal Composites. Journal of Modern Processes in Manufacturing and Production. 1(10) 77-86. dor:20.1001.1.27170314.2021.10.1.6.5.
[5] Muribwathoho, O., Msomi, V. and Mabuwa, S. 2023.Metal Matrix Composite Developed with Marine Grades: A Review. Materials Science Forum. 1085 :77-89. doi:10.4028/p-jub91t.
[6] Poursafar, A.2019. Analysis of Surface Roughness and Micro-hardness in Roller Burnishing of Aluminum Alloy 6061. Journal of Modern Processes in Manufacturing and Production. 3(8)5-12.
[7] Mortazavi Moghadam, F.s. and Rasouli, S. 2024. Recycling kaolin from paper waste and assessment of its application for paper coating. Materials Today Communications. 39 : 109142. doi:10.1016/j.mtcomm.2024.109142.
[8] Wang, J., Liu, H.-M., Li, S.-F. and Chen, W.-J. 2022. Cold Roll Forming Process Design for Complex Stainless-Steel Section Based on COPRA and Orthogonal Experiment. Materials. 15:8023. doi:10.3390/ma15228023.
[9] Mahdieh, M.S., Nazari, F., Zayed, K.S. and Aghoun, F. 2024. Investigating of Manufacturing of Titanium Hip Prosthesis by Cold Forging Process via FEM Analysis. Journal of Modern Processes in Manufacturing and Production. 3(13) 5-16. Doi:10.71762/z6e6-aw80.
[10] Lin, Y., Cui, X., Chen, K., Xiao, A. and Yan, Z. 2022. Forming Limit and Mechanical Properties of 2024-O Aluminum Alloy Under Electromagnetic Forming. Metals and Materials International. 28(10):2472-2482. Doi:10.1007/s12540-021-01128-x.
[11] Mortazavi Moghadam, F.A., Resalati, H., Rasouli, S. and Asadpour, G. 2021. Fabrication of high mechanical properties papers coated with CMC-based nanocomposites containing nanominerals synthesized from paper waste. Cellulose. 28(17) 11153-11164. doi:10.1007/s10570-021-04241-7.
[12] Kabakçı, M., Karaağaç, İ. and demirel, M. 2019. The experimental investigation of annealing parameters effects on al2024-t3 materials’ formability and mechanical properties. European Journal of Technic. 9(2), 338-346. doi:10.36222/ejt.648167.
[13] Mozafari, H. 2024. Numerical and Experimental Analysis of Temperature Field, Deformation, and Residual Stress in Two-Stage Single-Pulse Sub-Powder Welding Joints. Journal of Modern Processes in Manufacturing and Production. 2(13) 47-66. doi:10.71762/dyhz-qx27.
[14] Haji Aboutalebi, F., Farzin, M. and Poursina, M.2011. Numerical simulation and experimental validation of a ductile damage model for DIN 1623 St14 steel. The International Journal of Advanced Manufacturing Technology. 53:157-165. doi:10.1007/s00170-010-2831-z.
[15] Igelegbai, E., Alo, O., Adeodu, A. and Daniyan, I. 2016. Evaluation of Mechanical and Microstructural Properties of α-Brass Alloy Produced from Scrap Copper and Zinc Metal through Sand Casting Process. Journal of Minerals and Materials Characterization and Engineering. 5:18-28. Doi:10.4236/jmmce.2017.51002.
[16] Atay, H., Uslu, G., Kahmaz, Y. and Atay, Ö. 2020. Investigations of microstructure and mechanical properties of brass alloys produced by sand casting method at different casting temperatures. IOP Conference Series: Materials Science and Engineering. 726 :012018. doi:10.1088/1757-899X/726/1/012018.
[17] Tan, P., Sui, Y., Jin, H., Zhu, S., Jiang, Y. and Han, L. 2022. Effect of Zn content on the microstructure and mechanical properties of as-cast Al–Zn–Mg–Cu alloy with medium Zn content. Journal of Materials Research and Technology. 18:2620-2630. doi:10.1016/j.jmrt.2022.03.168.
[18] Utsunomiya ,H. and Matsumoto, R. 2014. Deformation Processes of Porous Metals and Metallic Foams (Review). Procedia Materials Science. 4:234–238. doi:10.1016/j.mspro.2014.07.614.
[19] Motyka, M., Mróz, S., Więckowski, W., Stefanik, A., Ziaja, W., Poręba, M. and Adamus, J. 2024. The influence of the rolling method on cold forming ability of explosive welded Ti/steel sheets. Archives of Civil and Mechanical Engineering. 24(3):191. doi:10.1007/s43452-024-01005-5.
[20] Zarei, E., Afsari, A., Saharkhiz, E. and Osgoui, S.K.G. 2024. Comparison of the Microstructure and Mechanical Behavior of the Welding Zone of Aluminum Alloy 5754 by FSW and TIG Methods. Journal of Modern Processes in Manufacturing and Production. 2(13): 67-84. doi.org/10.71762/7mt5-v498.
[21] Kang, C., Sun, B., Zhang, X. and Yao, C. 2024. Research on the Mechanism and Processability of Roll Forming. Materials. 17 : 3126. doi:10.3390/ma17133126.
[22] Tayyebi, M., Rahmatabadi, D.,. Karimi, .A., Adhami, M. and Hashemi, R. 2021. Investigation of annealing treatment on the interfacial and mechanical properties of Al5052/Cu multilayered composites subjected to ARB process. Journal of Alloys and Compounds. 871:159513. doi:10.1016/j.matdes.2011.12.045.
[23] Delshad, M., Hashemi, R. and Sedighi, M. 2019. The effect of temperature on the mechanical properties and forming limit diagram of aluminum strips fabricated by accumulative roll bonding process. Journal of Materials Research and Technology. 9(105):4389-4400. doi:10.1007/s00170-019-04586-1.
[24] Mayakannan, S., Muthuraj, M., Ademi, E., Kumar, S.G. , Bhanu Prasad, B. and Ahammad, S.K.H. 2023. Influence of process parameters on microhardness and porosity of Al 2024 microwave cast. Materials Today: Proceedings. 29 (10):212-231. doi:10.1016/j.matpr.2023.05.477.
[25] Raykar, S.J., Chaugule, Y.G., Pasare, V.I., Sawant, D.A. and Patil, U.N. 2022. Analysis of microhardness and degree of work hardening (DWH) while turning Inconel 718 with high pressure coolant environment. Materials Today: Proceedings. 59(1) :1088-1093. doi:10.1016/j.matpr.2022.02.426.
[26] Diehl, M., Kertsch, L., Traka, K., Helm, D. and Raabe, D. 2019. Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel. Materials Science and Engineering. 755 :295-306. doi:10.1016/j.msea.2019.02.032.
[27] Zhao, Y.H., Bingert, J.F., Topping, T.D., Sun, P.L., Liao, X.Z., Zhu, Y.T. and Lavernia, E.J. 2020. Mechanical Behavior, deformation mechanism and microstructure evolutions of ultrafine-grained Al during recovery via annealing. Materials Science and Engineering. 772:138706. doi:10.1016/j.msea.2019.138706.
[28] Mortazavi Moghadam, F.A., Resalati, H., Rasouli, S. and Asadpour, G. 2022. New method of producing nanominerals from office paper waste and investigating their microstructural properties. Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-02782-w.
[29] Mortazavi Moghadam, F.A., Khoshkalampour, A., Mortazavi Moghadam, F.A., Pourvatan Doust, S., Naeijian, F. and Ghorbani, M. 2023. Preparation and physicochemical evaluation of casein/basil seed gum film integrated with guar gum/gelatin based nanogel containing lemon peel essential oil for active food packaging application. International Journal of Biological Macromolecules. 224:786-796. doi:10.1016/j.ijbiomac.2022.10.166.
[30] Nie, J. , Liu, M., Wang, F., Zhao, Y., Li, Y., Cao, Y. and Zhu, Y. 2016. Fabrication of Al/Mg/Al Composites via Accumulative Roll Bonding and Their Mechanical Properties. Materials. 9(11):951. doi:10.3390/ma9110951.
[31] Ma, X., Li, F., Li, J., Wang, Q., Yuan, Z. and Fang, Y. 2015. Analysis of forming limits based on a new ductile damage criterion in St14 steel sheets. Materials & Design. 68(5):134-145. doi:10.1016/j.matdes.2014.12.029.
[32] Mortazavi Moghadam, F.S. and Mortazavi Moghadam, F.A. 2024. Kombucha fungus bio-coating for improving mechanical and antibacterial properties of cellulose composites. Materials Today Communications. 40:109609. doi:10.1016/j.mtcomm.2024.109609.
[33] Najafizadeh, N., Rajabi, M., Hashemi, R. and Amini, S. 2021. A method and apparatus for determination of the ultrasonic-assisted forming limit diagram, Proceedings of the Institution of Mechanical Engineers, Part C. Journal of Mechanical Engineering Science. 235(23):7062-7073. doi:10.1177/09544062211011509