Humic Acid and Iron Fertilizers Enhance the Growth Responses and Antioxidant Enzyme Activity of Cineraria (Pericallis × hybrida L.)
Subject Areas : Journal of Ornamental PlantsLili Fatehnezhad 1 , Abolfazl Jowkar 2
1 - Department of Horticultural Science, Shiraz University, Shiraz, Iran
2 - Nuclear Agriculture Research School, Nuclear Science and Technology Research Institue (NSTRI), Atomic Energy Organization of Iran
Keywords: Antioxidant enzymes activity, Cineraria, High soil pH, Leaf chlorosis, Pericallis × hybrida L.,
Abstract :
Cineraria (Pericallis hybrida L.) has faced growth hindrance and chlorosis. Humic acid, iron sulfate and iron chelate fertilizers were investigated for cineraria cultivation in alkaline soil. The study was arranged in a factorial experiment based on a completely randomized design with three replications and 4 samples in each replication. The media were enriched using humic acid (0, 0.5, 1 g/kg soil) and iron fertilizers ( 5 and 10 mg/kg iron sulfate and 5 and 10 mg/kg iron chelate). The plants that were treated with soil supplemented with 1 g/kg humic acid in combination with 10 mg/kg iron chelate exhibited improvements in plant height (86%), stem diameter (100%), fresh root weight (170%), flowering period (166%), flower number (182%), inflorescence number (252%), flower diameter (59%) and total chlorophyll content (300%). The application of 1 g/kg humic acid and 10 mg/kg iron chelate increased the mineral element content of potassium, nitrogen and phosphorous by 179%, 193% and 675%, respectively. Combinations of 0.5 g/kg humic acid and 10 mg/kg iron chelate enhanced the anthocyanin (131%), leaf area (140%), TSS (332%) and starch (642%). Fertilization with 0.5 g/kg humic acid in combination with 5 mg/kg iron chelate resulted in the highest activity of the antioxidant enzymes SOD (238%), POD (324%), and CAT (667%), and reduced ion leakage by 60%. 1 g/kg humic acid as a biofertilizer in combination with 0.5 mg/kg iron chelate are suggested for use in the production of plants in soils with stressful high pH conditions.
Abbass, J. A., Al-Zurf, M. T. H. and Ajami, A. T. 2020. Response of freesia (Freesia hybrida) to spraying with an organic acid (Laq-Humus) and chelated iron and their effect on growth and flowering indicators. Euphrates Journal of Agriculture Science, 12(1): 31-41.
Adam, A. 2021. Studies the response of gladiolus plants to humic acid, potassium and water irrigation intervals. Scientific Journal of Agricultural Sciences, 3(1): 23-37.
Ahmad, I., Usman Saquib, R., Qasim, M., Saleem, M., Sattar Khan, A. and Yaseen, M. 2013. Humic acid and cultivar effects on growth, yield, vase life, and corm characteristics of gladiolus. Chilean Journal of Agricultural Research, 73(4): 339-344.
Ali, A. F., Salim, H. A., Bader, B. R. and Abed, A. H. 2021. Response of Swiss chard cultivars (Beta vulgaris L.) to chelated iron, nano iron and Glomus mosseae. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 735(1): 012057.
Baldotto, M. A. and Baldotto, L. E. B. 2013.Gladiolus development in response to bulb treatment with different concentrations of humic acids. Revista Ceres, 60: 138-142.
Bhute, P., Panchbhai, D., Raut, V., Neha, C. and Hemlata, K. 2017. Studies on flower production in annual chrysanthemum in response to iron and zinc. Plant Arch, 17: 1017-1019.
Boogar, A. R., Shirmohammadi, E. and Geikloo, A. 2014. Effect of humic acid application on qualitative characteristic and micronutrient status in (Petunia hybrida L.). Bulletin of Environment, Pharmacology and Life Sciences, 3(9): 15-19.
Bremner, J. M. 1996. Nitrogen‐total. Methods of soil analysis: Part 3 Chemical methods, 5:1085-1121.
Cordeiro, F. C., Santa-Catarina, C., Silveira, V. and de Souza, S. R. 2011. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays). Bioscience, Biotechnology, and Biochemistry, 75(1): 70-74.
Dhindsa, R. S., Plumb-Dhindsa, P. A. M. E. L. A. and Thorpe, T. A. 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1): 93-101.
Dole, J. and Wilkins, H. 1995. Floriculture, principles and species. Pearson/Prentice Hall. 613 Page.
Elmongy, M. S., Zhou, H., Cao, Y., Liu, B. and Xia, Y. 2018. The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea. Scientia Horticulturae, 227: 234-243.
Fan, H. M., Wang, X. W., Sun, X., Li, Y. Y., Sun, X. Z. and Zheng, C. S. 2014. Effects of humic acid derived from sediments on growth, photosynthesis and chloroplast ultrastructure in chrysanthemum. Scientia Horticulturae, 177: 118-123.
Fox, J. D. and Robyt, J. F. 1991. Miniaturization of three carbohydrate analyses using a microsample plate reader. Analytical Biochemistry, 195(1): 93-96.
Gabra, G. W. R. 2021. Response of Narcissus constantinople 'Double Roman' plants of some natural and chemical fertilizers. Egyptian Academic Journal of Biological Sciences, H. Botany, 12(1):147-160.
Ghafari, H. and Razmjoo, J. 2013. Effect of foliar application of nanoiron oxidase, iron chelate and iron sulfate rates on yield and quality of wheat. International Journal of Agronomy and Plant Production, 4(11): 2997-3003.
Ghatas, Y. A. A. and Mohamed, Y. F. Y. 2018. Influence of mineral, micronutrients and lithovit on growth, oil productivity and volatile oil constituents of Cymbopogon citrus L. plants. Middle East Journal of Agricultural Research, 7(1):162-174.
Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide dismutases I. Occurrence in higher plants. Plant Physiology, 59(2): 309-314.
Gulen, H. and Eris, A. 2004. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science, 166(3): 739-744.
Haghighi, M., Kafi, M. and Fang, P. 2012. Photosynthetic activity and N metabolism of lettuce as affected by humic acid. International Journal of Vegetable Science, 18(2):182-189.
Hembrom, R. and Singh, A. K. 2015. Effect of iron and zinc on growth, flowering and bulb yield in lilium. International Journal of Agriculture, Environment and Biotechnology, 8(1): 61-64.
Hiscox, J. T. and Israelstam, G. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12): 1332-1334.
Hourani, W.2022. Effect of fertilizers on growth and productivity of saffron: A review. Agronomy Research, 20:1-18.
Ibrahim, O. H. M. 2019. Chelated iron and magnesium boost productivity and anthocyanins content in calyces of Hibiscus sabdariffa L. Assiut Journal of Agricultural Sciences, 50(2): 93-108.
Izadi, Z., Nejad, A. R. and Abadía, J. 2020. Physio-morphological and biochemical responses of pot marigold (Calendula officinalis L.) to split iron nutrition. Acta Physiologiae Plantarum, 42(1): 1-14.
Jin-gang, W., Wei, L., Hong-wei, R., Yuan-da, L., Ding, B. and Jing, X. 2014. Cloning and expression analysis of MIO gene from Pericallis hybrida B. Nord. Journal of Northeast Agricultural University, 21(1): 10-15.
Kabir, A. H., Rahman, M. M., Haider, S. A. and Paul, N. K. 2015. Mechanisms associated with differential tolerance to Fe deficiency in okra (Abelmoschus esculentus Moench). Environmental and Experimental Botany, 112: 16-26.
Kamali Omidi, T., Khorgami, A. and Taleshi, K. 2022. Effect of foliar application of humic acid levels and nanofertilizer application on some quantitative and qualitative traits of pumpkin (Cucurbita pepo L.) in climatic conditions of Khorramabad area, Iran. Caspian Journal of Environmental Sciences, 20 (3): 467-476.
Kasem, M. M. and El-baset, A. 2016. Allelopathic effect of the foliar spray by the aqueous seeds extract of moringa (Moringa oleifera) and fenugreek (Trigonella foenum graecum) on cineraria (Pericallis x hybrida) plant. Journal of Plant Production, 7(11): 1209-1214.
Li, Y. 2019. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Scientific Reports, 9(1): 1-9.
McCready, R. M., Guggolz, J., Silviera, V. and Owens, H. S. 1950. Determination of starch and amylose in vegetables. Application to peas. Analytical Chemistry, 22(1):1156-1158.
Memon, S. A., Bangulzai, F. M., Keerio, M. İ., Baloch, M. A. and Buriri, M. 2014. Effect of humic acid and iron sulfate on growth and yield of zinnia (Zinnia elegans). Journal of Agricultural Technology, 10(6): 1517-152.
Mirzaee Esgandian, N., Jabbarzadeh, Z. and Rasouli-Sadaghiani, M. H. 2020. Investigation on some morphological and physiological characteristics of Gerbera jamesonii as affected by humic acid and nanocalcium chelate in hydroponic culture conditions. Journal of Ornamental Plants, 10(1):1-13.
Mohamed, A. A. O., Mohammed, B. K. and Taha, S. M. 2020. Effect of humic acid and chelated iron on yield and quality of two strawberry cultivars (Fragaria x ananassa Duch.). Euphrates Journal of Agriculture Science, 12(2): 405-422.
Mousa, G. T., Abdul-Hafeez, E. Y. and Ibrahim, O. H. M. 2015. Response of gardenia plants grown under various growth media and ferrous sulfate application. Pakistan Journal of Agricultural Sciences, 52 (3):651-658.
Murphy, J. and Riley, J. P. A. 1962. Modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 21(1): 31-36.
Nemati Lafmejani, Z., Jafari, A. A., Moradi, P. and Ladan Moghadam, A. 2018. Impact of foliar application of iron-chelate and Iron nano particles on some morpho-physiological traits and essential oil composition of peppermint (Mentha piperita L.). Journal of Essential Oil Bearing Plants, 21(5):1374-1384.
Ngan, H. T. M., Tung, H. T., van Le, B. and Nhut, D. T. 2020. Evaluation of root growth, antioxidant enzyme activity and mineral absorbability of carnation (Dianthus caryophyllus ‘Express Golem’) plantlets cultured in two culture systems supplemented with iron nanoparticles. Scientia Horticulturae, 272: 109612.
Nikbakht, A., Kafi, M., Babalar, M., Xia, Y. P., Luo, A. and Etemadi, N. A. 2008. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition, 31(12): 2155-2167.
Noroozisharaf, A. and Kaviani, M. 2018. Effect of soil application of humic acid on nutrients uptake, essential oil and chemical compositions of garden thyme (Thymus vulgaris L.) under greenhouse conditions. Physiology and Molecular Biology of Plants, 24(3):423-431.
Ozden, M., Demirel, U. and Kahraman, A. 2009. Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119(2):163-168.
Pirzad, A. and Shokrani, F. 2012. Effects of iron application on growth characters and flower yield of Calendula officinalis L. under water stress. World Applied Sciences Journal, 18(9):1203-1208.
Poornima, S., Munikrishnappa, P. M., Kumar, S. A., Seetharamu, G. K. and Kumar, R. 2018. Effect of foliar application of micronutrients on growth and flowering of floribunda rose under open air condition. International Journal of Current Microbiology and Applied Sciences 7(10): 1873-1878.
Rasouli, F., Nasiri, Y., Asadi, M., Hassanpouraghdam, M. B., Golestaneh, S. and Pirsarandib, Y. 2022. Fertilizer type and humic acid improve the growth responses, nutrient uptake, and essential oil content on Coriandrum sativum L. Scientific Reports, 12(1): 7437.
Ribeiro, T. P., Fernandes, C., Melo, K. V., Ferreira, S. S., Lessa, J. A., Franco, R. W., and Horn, A. 2015. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Free Radical Biology and Medicine, 80: 67-76.
Salem, H., Khattab, M. and Yacout, M. 2019. Effect of levels and application methods of iron and zinc on growth and flowering of Rosa hybrida cv. Dallas. Alexandria Journal of Agricultural Sciences, 64(2): 63-73.
Shokri-Gharelo, D. D. M. and Ghader, R. 2017. Effects of nanoiron spraying on the antioxidant activities of canola leaf under drought stress. Journal of Biodiversity and Environmental Sciences, 11: 304-311.
Wang, S., Chu, Z., Ren, M., Jia, R., Zhao, C., Fei, D. and Ding, X. 2017. Identification of anthocyanin composition and functional analysis of an anthocyanin activator in Solanum nigrum fruits. Molecules, 22 (6): 1-14.