The effect of climatic design of the building on the reduction of Embodied energy and comparison with the consumed electricity (A case-study of Shiraz city)
Subject Areas : Power Engineering and Energy ManagementAzar Zinali kharagy 1 , Maryam Haghpanah 2
1 - , Department of Architecture, Roudan Branch, Islamic Azad University, Roudan, Iran
2 - Department of Architecture, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Keywords: Embodied Energy, architectural design, building materials, architectural solutions, consumed electricity,
Abstract :
This research has evaluated the reduction of embodied energy consumption in the building (energy consumed during construction) and comparing it with energy consumption during the exploitation period (electricity consumption). First, according to field and library studies, influential independent variables are explained. Then the Embodied energy of a building in hot and dry climate in Shiraz city is calculated after modeling in Excel software. The results in this article include two parts: theoretical results that are the product of literature review and experimental results that are obtained from calculations and analyzed. The results of this research show that the Embodied energy of each square meter of the sample building in the architectural sector is 1.8 megajoules per square meter and the results show that these variables change the Embodied energy between 0.3 and 3.75 megajoules per square meter. As it is known, the embodied energy during the construction of a building with an area of 1080 square meters is equal to three years of electricity consumption of a building. This research also shows that architectural efficiency can reduce the Embodied energy of the building in the construction industry.
کریم پور ،علی رضا ،تاثیر مؤلفه های طراحی معماری بر میزان مصرف انرژی در ساختمان های مسکونی با استفاده از مدل های شبیه سازی (مورد مطالعه: شهر تهران ) ،1394،پایان نامه برای درجه دکترا ، دانشگاه آزاد اسلامی واحد تهران مرکزی
2. منصوری, حیدری, & شاهین. (2021). رویکردهای انرژی مدار در معماری از دیدگاه انرژی نهفته. معماری اقلیم گرم و خشک, 13(9), 137-153.
مرادخانی, سالم, & محمد دانا. (2022). بررسی تأثیر جداره های خارجی ساختمان های مسکونی بر میزان انرژی نهفته و گاز دی اکسید کربن انتشار یافته (Co2eq)؛ مطالعه موردی سنندج. فصلنامه جغرافیا (برنامه ریزی منطقه ای), 12(46), 940-957.
مرادخانی, ا., نیک قدم, ن., & طاهباز, م. (2020). مصرف انرژی و انتشار کربن معادل در چرخه حیات جدارههای خارجی متداول مسکن شهری، رهیافتی در توسعه پایدار انرژی (مطالعه موردی: مناطق شهر سنندج). مطالعات برنامه ریزی سکونتگاه های انسانی, 5(4), 1035.
عباس زاده, حق لسان, مسعود, ابراهیمی اصل, & حسن. (2022). شبیه سازی ساختمانهای مسکونی با مولفه های مختلف معماری در جهت بهینه سازی مصرف انرژی در شهر تهران (مطالعه موردی منطقه 1). فصلنامه جغرافیا (برنامه ریزی منطقه ای), 12(49), 430-448.
زینلی خراجی, آ., آذر, نیک قدم, مفیدی شمیرانی, & سید مجید. (2021). تبیین تاثیر طراحی ساختمان بر کاهش انرژی نهفته در موقعیت جغرافیایی و اقلیمی بندرعباس. فصلنامه علمی و پژوهشی نگرش های نو در جغرافیای انسانی, 13(3), 570-590.
3. Abdagiri, P. V. (2017). Relationship Between Embodied Energy and Cost of Building Materials: A Case Study (Doctoral dissertation).51
4. Ajayi, S. O., Oyedele, L. O., Ilori, O. M. (2019). Changing significance of embodied energy: A comparative study of material specifications and building energy sources. Journal of Building Engineering, 23, 324-333.
5. Aktas, C. B., & Bilec, M. M. (2012). Impact of lifetime on US residential building LCA results. The International Journal of Life Cycle Assessment, 17(3), 337-349.
6. Almeida, M., Barbosa, R., Malheiro, R. (2020). Effect of Embodied Energy on Cost-Effectiveness of a Prefabricated Modular Solution on Renovation Scenarios in Social Housing in Porto, Portugal. Sustainability, 12(4), 1631
7. Bardhan, S. (2011). Embodied energy analysis of multi-storied residential buildings in urban India. WIT Transactions on Ecology and the Environment, 143, 411-421
8. Chen, S., Tan, Y., & Liu, Z. (2019). Direct and embodied energy-water-carbon nexus at an inter-regional scale. Applied Energy, 251, 113401.
9. Crawford, R. et al. (2010). A comprehensive framework for assessing the life-cycle energy of building construction assemblies. Architectural science review, 53(3), 288-296
10. Crishna, N., Banfill, P. F. G., & Goodsir, S. (2011). Embodied energy and CO2 in UK dimension stone. Resources, Conservation and Recycling, 55(12), 1265-1273.
11. Dascalaki, E, et al. (2020 ). "On the share of embodied energy in the lifetime energy use of typical Hellenic residential buildings." IOP Conference Series: Earth and Environmental Science. Vol. 410. No. 1. IOP Publishing.
12. Ding, G., 2004. The development of a multi-criteria approach for the measurement of sustainable performance for built projects and facilities. PhD Thesis, University of Technology, Sydney.
13. Dixit, M. K., et al. (2014). Recurrent embodied energy and its relationship with service life and life cycle energy: a review paper. Facilities, 32(3-4), 160-181.
14. Hammond, Geoff, et al. (2008) Inventory of carbon energy: ICE. Vol. 5. Bath: Sustainable Energy Research Team, Department of Mechanical Engineering, University of Bath.
15. Haynes, R. (2010). Embodied energy calculations within life cycle analysis of residential buildings. Etet1812. Staging-Cloud. Netregistry, 1-16.
16. Hu, M. (2020). A Building Life-Cycle Embodied Performance Index—The Relationship between Embodied Energy, Embodied Carbon and Environmental Impact. Energies, 13(8), 1905.
17. Koezjakov, A., et al. (2018) "The relationship between operational energy demand and embodied energy in Dutch residential buildings." Energy and Buildings 165: 233-245.
18. Lolli, N., Fufa, S. M., & Wiik, M. R. K. (2017). A parametric tool for the assessment of operational energy use embodied energy and embodied material emissions in building.
19. Maassarani, S., et al. (2017). Developing a Calculation Tool for Embodied Energy in the Conceptual Design Phase. International Journal of Computer Applications, 975, 8887.
20. Malmqvist, Tove, et al. (2018)"Design and construction strategies for reducing embodied impacts from buildings–Case study analysis." Energy and Buildings 166: 35-47.
21. Nizam, R. S., et al. (2018). A BIM-based tool for assessing embodied energy for buildings. Energy and Buildings, 170, 1-14.
22. Noman, A., et al. (2019). Sustainable Design of Reinforced Concrete Flat- Plate Buildings Based on Cost, Embodied Energy, and Carbon Footprint.
23. Omrany, Hossein, et al. (2020) "Application of life cycle energy assessment in residential buildings: a critical review of recent trends." Sustainability 12.1: 351.
24. Praseeda, K. I., et al. (2016). Embodied and operational energy of urban residential buildings in India. Energy and buildings, 110, 211-219.
25. Ramesh, S. (2012). Appraisal of vernacular building materials and alternative technologies for roofing and terracing options of embodied energy in buildings. Energy Procedia, 14, 1843-1848.
26. Rasmussen, F. et al. (2018). Analyzing methodological choices in calculations of embodied energy and GHG emissions from buildings. Energy and buildings, 158, 1487-1498.
27. Rauf, A. (2015). The effect of building and material service life on building life cycle embodied energy (Doctoral dissertation). Faculty of Architecture, Building Planning، The University of Melbourne،189
28. Reddy, B. V., Kumar, P. P. (2010). Embodied energy in cement stabilized rammed earth walls. Energy and Buildings, 42(3), 380-385
29. Reztrie, N. D., Larasati, D. (2019, July). Factors Influence Embodied Energy and Embodied Carbon Value at Design Phase of Low Middle-Class Apartment in Indonesia. IOP Conference Series: Earth and Environmental Science (Vol. 294, No. 1, p. 012095). IOP Publishing.
30. Salehian, S et al. (2020). Assessment on Embodied Energy of Non-Load Bearing Walls for Office Buildings. Buildings, 10(4), 79.
31. Shukla, A., Tiwari, G. N., & Sodha, M. S. (2009). Embodied energy analysis of adobe house. Renewable Energy, 34(3), 755-761.
32. Stephan, A. (2013). Towards a comprehensive energy assessment of residential buildings: a multi-scale life cycle energy analysis framework (Doctoral dissertation).
33. Taffese, W. Z., Abegaz, K. A. (2019). Embodied energy and CO2 emissions of widely used building materials: The Ethiopian context. Buildings, 9(6), 136.
34. Takano, A., Pal, S. K., Kuittinen, M., & Alanne, K. (2015). Life cycle energy balance of residential buildings: A case study on hypothetical building models in Finland. Energy and Buildings, 105, 154-164.
35. Tarabieh, K., Khorshed, M. (2019). Optimizing Evaluation Methods for the Embodied Energy and Carbon Management of Existing Buildings in Egypt. Buildings, 9(4), 90.
36. Treloar, G. J. (1998). Comprehensive embodied energy analysis framework (No. Ph. D.). Deakin University.Deakin University, Victoria; 311
37. UNEP. 2018 Global Status Report: Towards a Zero-Emission, E cient and Resilient Buildings and Construction Sector. 2018. Available online: https://www.globalabc.org/uploads/media/default/0001/
38. Whitworth, A. H., Tsavdaridis, K. D. (2020). Genetic Algorithm for Embodied Energy Optimisation of Single Grid Steel and Concrete Composite Structures. Procedia Manufacturing
39. Zhu, Han, et al. "The exploration of the life-cycle energy saving potential for using prefabrication in residential buildings in China." Energy and Buildings 166 (2018): 561-570.
Z. Li, F. Liu, W. Yang, S. Pengand J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects”, Jun. 2021, doi: 10.1109/TNNLS.2021.3084827.