Subject Areas : International Journal of Data Envelopment Analysis
Fatemeh Mohammadi 1 , masoud sanei 2 , Mohsen Rostamy 3
1 -
2 -
3 - Department of Mathematics, science and research Branch, Islamic Azad University, Tehran, Iran
Keywords:
Abstract :
1- J. Han, M. Kamber, j. Pei., (2011), Data mining concepts and Techniques, morgan kaufmann, 3rd edition, 744 pages.
2- Aparicio. J., Ruiz. JL., Sirvent. I. Closest targets and minimum distance to the Pareto-efficient frontier in DEA. Journal of productivity Analysis 28(3):209-218, 2007.
3- R. D. Banker, (1984). Estimating most productive scale size using data envelopment analysis. European Journal of Operational Research, 17, 35–44.
4- R. D. Banker, A. Charnes, W.W. Cooper, Some models for Estimating technical and scale inefficiency in data envelopment analysis, Manag.Sci. 30 (1984) 1078-1092.
5- R. D. Banker, & A. Maindiratta, (1986). Piecewise log linear estimation of efficient production surfaces. Management Science, 32, 126–135.
6- R. D. Banker, & R. M. Thrall, (1992). Estimation of returns to scale using data envelopment analysis. European Journal of Operational Research, 62, 74–84.
7- A. Charnes, W.W. Cooper, E. Rhodes, Measuring the efficiency of decision-making units, Eur. J. Oper. Res. 2 (1978) 429{444.
8- W. W. Cooper, R.G. Thompson, R.M. Thrall, Extensions and new developments in DEA, Annal. Oper. Res. 1996; 66: 3–45.
9- X. Dai, T. Kuosmanen, Best-practice bench marking using clustering methods: Application to energy regulation. Omega, 2014; 42(1): 179-188.
10- H. Didehkhani, F. Hosseinzade Lotfi, S. Sadi-Nezhad, Practical benchmarking in DEA using artificial DMUs. Journal of Industrial Engineering International, 2019; 15. 293-301.
11- R. Eslami, M. Khodabakhshi, G.R. Jahanshahloo, F. Hosseinzadeh lotfi, M. Khoveyni, estimating most productive scale size with imprecise-chance constrained input–output orientation model in data envelopment analysis, Computers & Industrial Engineering 63(1) 2012,254-261.
12- Førsund, On the calculation of the scale elasticity in DEA models. Journal of Productivity Analysis, 1996; 7, 283–302.
13- R. Fare, S. Grosskopf, C. A. K. Lovell, The Measurement of Efficiency of Production. Kluwer Nijhoff, Boston, 1985.
14- R. Fare, S. Grosskopf, C. A. K. Lovell, Production Frontiers. Cambridge University Press, 1994.
15- B. Golany, G. Yu, Estimating returns to scale in DEA. European Journal of Operational Research, 1997; 103: 28–37.
16- A. Hatami-Marbini, Z. G. Beigi, J. L. Hougaard, K. Gholami, Measurement of Returns to-Scale using Interval Data Envelopment Analysis Models, Computers & Industrial Engineering (2017),
17- F. Hosseinzadeh Lotfi, A. Hatami-Marbini, PJ. Agrell, N. Aghayi, K. Gholami, allocating fixed resources and setting targets using a common weights DEA approach. Computer and industrial engineering, 2013; 64,2. 631-640.
18- G. R. Jahanshahloo, and M. Khodabakhshi, using input–output orientation model for determining most productive scale size in DEA. Applied Mathematics and Computation.2003, 146(2–3), 849–855
19- G. R. Jahanshahloo, M. Soleimani-damaneh, M. Rostamy-malkhalifeh, an enhanced procedure for estimating returns-to-scale in DEA. Appl Math Comput, 2005; 171: 1226–1238.
20- L. Karamali, A. Memariani, G.R. Jahanshahloo, M. Rostamy-Malkhalifeh, Benchmarking by an integrated data envelopment analysis-artificial neural network algorithm. J. Basic. Appl. Sci. RES, 2013; 3,6,892-898.
21- M. Khodabakhshi," Estimating Most Productive Scale Size in Stochastic Data Envelopment Analysis ", Economic Modelling, 26, 2009, 968-973.
22- C. Y. Lee, Most productive scale size versus demand fulfillment: A solution to the capacity dilemma. European Journal of Operational Research, 2016; 248(3): p. 954-962.
23- M. Omidi, M. Rostamy-Malkhalifeh, A. Payan, Estimation of Overall Returns to Scale (RTS) of a Frontier Unit Using the Left and Right RTS. Comput Econ, 2019; 53, 633–655.
24- R. W. Po, Y.Y. Guh, M.S. Yang, a new clustering approach using data envelopment analysis. European Journal of operational research, 2009; 199, 276-284.
25- S. Razipour-GhalehJough, F. Hosseinzadeh Lotfi, G. R. Jahanshahloo, M. Rostamy-malkhalifeh, H. Sharafi, finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis. Annals of Operations Research, 2020; 288, 755–787.
26- J. L. Ruize, I. Sirvent, common benchmarking and ranking of units with DEA. Omega,2016; 65,1-9.
27- Y. M. Wang, and Y.-X. Lan, Estimating most productive scale size with double frontiers data envelopment analysis. Economic Modelling, 2013; 33: p. 182-186.
28- B. K. Sahoo, M. Khoveyni, R. Eslami, p. Chaudhury, Returns to scale and most productive scale size in DEA with negative data. European Journal of Operational Research, 2016; 255(2),545-558.
29- L. M. Seiford, J. Zhu, On alternative optimal solutions in the estimation of returns to scale in DEA. European Journal of Operational Research, 1998; 108 (1), 149–152.
30- L. M. Seiford, J. Zhu, An investigation of returns to scale under Data Envelopment Analysis. Omega, 1999; 27, 1–11.
31- M. Soleimani-damaneh, G. R. Jahanshahloo, S. Mehrabian, M. Hasannasab, Scale elasticity and returns to scale in the presence of alternative solutions. J Comput Appl Math, 2009; 233: 127–136.
32- M. Soleimani-damaneh, G. R. Jahanshahloo, S. Mehrabian, M. Hasannasab, Returns to scale and scale elasticity in the presence of weight restrictions and alternative solutions. Knowl-Based Syst, 2010; 23: 86–93.
33- M. Soleimani-damaneh, A. Mostafaee, a comment on ‘‘Returns to scale and scale elasticity in data envelopment analysis’’. Eur J of Oper Res., 2008; 184:1179–1181.
34- M. Soleimani-damaneh, A. Mostafaee, Stability of the classification of returns to scale in FDH models. Eur J of Oper Res., 2009; 196: 1223-1228.
35- T. Sueyoshi, M. Goto, Measurement of returns to scale and damages to scale for DEA-based operational and environmental assessment: How to manage desirable (good) and undesirable (bad) outputs? Eur J of Oper Res., 2011; 211: 76–89.
36- T. Sueyoshi, K. Sekitani, Returns to scale in dynamic DEA. Eur J of Oper Res., 2005; 161: 536–544.
37- T. Sueyoshi, K. Sekitani, Measurement of returns to scale using a non-radial DEA model: A range-adjusted measure approach. Eur J of Oper Res., 2007a; 176: 1918–1946.
38- T. Sueyoshi, K. Sekitani, the measurement of returns to scale under a simultaneous occurrence of multiple solutions in a reference set and a supporting hyperplane. Eur J of Oper Res., 2007b; 181: 549–570.
39- J. Wu, L. Liang, M. Song, Performance based clustering for benchmarking of container ports: an application of DEA and cluster analysis technique. International journal of computational intelligence system, 2010; 3(6), 709-722.
40- M. Zarepisheh, M. Soleimani-damaneh, L. Pourkarimi, Determination of returns to scale by CCR formulation without chasing down alternative optimal solutions. Applied Mathematics Letters, 2006; 19(9),964–967.
41- M. Zarepisheh, M. Soleimani-damaneh, A dual simplex-based method for determination of the right and left returns to scale in DEA. Eur J of Oper Res., 2009; 194: 585–591.
42- J. Zhu, Z.H. Shen, a discussion of testing DMU’s returns to scale in DEA, Eur. J. Oper. Res., 1995; 81, 590–596.