Subject Areas : Journal of Optoelectronical Nanostructures
Mazdak Ghaedsharafi 1 , Mohammad Reza Moslemi 2 , Farshad Pesaran 3
1 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 - Department of Electrical Engineering, Zarghan Branch, Islamic Azad University, Zarghan, Iran
3 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Keywords:
Abstract :
[1] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353 (6298), (2016), 9439, doi:10.1126/science.aac9439.
[2] S. Karimi Khorrami, M. Berahman, M. Sadeghi, Carbon Monoxide Gas Sensor Based on ZrSe2 monolayer nanosheet, Journal of Optoelectronical Nanostructures, 7(1), (2022), pp. 55-66, doi: 10.30495/jopn.2022.29652.1250.
[3] C. Yan, L. Gan, X. Zhou, J. Guo, W. Huang, J. Huang, B. Jin, J. Xiong, T. Zhai, Y. Li, Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. (2017), 27, 1702918, https://doi.org/10.1002/adfm.201702918.
[4] M. Mattinen, G. Popov, M. Vehkamaki, P. J. King, K. Mizohata, P. Jalkanen, J. Raisanen, M. Leskelä, M. Ritala, Atomic layer deposition of emerging 2d semiconductors, HfS2 and ZrS2, for optoelectronics. Chem. Mater. (2019), 31, 5713−5724, https://doi.org/10.1021/acs.chemmater.9b01688.
[5] K. F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics (2016), 10, 216−226, doi:10.1038/nphoton.2015.282.
[6] D. Wang, X. Zhang, Z. Wang, Recent advances in properties, synthesis and applications of two-dimensional HfS2. J. Nanosci. Nanotechnol. (2018), 18, 7319−7334, https://doi.org/10.1166/jnn.2018.16042.
[7] U. Erkılıc, P. Solís-Fernández, H. G. Ji, K. Shinokita, Y. C. Lin, M. Maruyama, K. Suenaga, S. Okada, K. Matsuda, H. Ago, Vapor phase selective growth of two-dimensional perovskite/WS2 heterostructures for optoelectronic applications. ACS Appl. Mater. Interfaces, (2019), 11, 40503−40511, https://doi.org/10.1021/acsami.9b13904.
[8] J. Kang, H. Sahin, F. M. Peeters, Mechanical properties of monolayer sulphides: a comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. (2015), 17, 27742−27749, https://doi.org/10.1039/C5CP04576B.
[9] Q. Zhao, Y. Guo, K. Si, Z. Ren, J. Bai, X. Xu, Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. physica status solidi (b) (2017), 254, 1700033, http://dx.doi.org/10.1002/pssb.201700033.
[10] S. Bahrami, O. Bahrami, Giant enhancement of second harmonic generation efficiency from monolayer group-VI transition metal dichalcogenides embedded in 1D photonic crystals, Journal of Optoelectronical Nanostructures, 7(1), (2022), pp. 67-96, doi: 10.30495/jopn.2022.28839.1234.
[11] M. Abdulsalam, D. P. and Joubert, Optical spectrum and excitons in bulk and monolayer MX2 (M_Zr, Hf; X_S, Se). Phys. Status Solidi B 253 (4), (2016), 705–711. doi:10.1002/pssb.201552584.
[12] C. Cheng, J. T. Sun, X. R. Chen, S. and Meng, Hidden spin polarization in the 1 T -phase layered transition-metal dichalcogenides MX 2 (M_ Zr, Hf; X _S, Se, Te). Sci. Bull. 63 (2), (2018), 85–91. doi:10.1016/j.scib.2017.12.003.
[13] M. Salavati, Electronic and mechanical responses of two-dimensional HfS2, HfSe2, ZrS2, and ZrSe2 from first-principles. Front. Struct. Civ. Eng. 13 (2), (2018), 486–494. doi:10.1007/s11709-018-0491-5.
[14] H. S. Tsai, J. W. Liou, I. Setiyawati, K. R. Chiang, C. W. Chen, C. C. Chi, et al., Photoluminescence characteristics of multilayer HfSe2 synthesized on sapphire using ion implantation. Adv. Mater. Interfaces. 5 (8), (2018), 1701619. doi:10.1002/admi.201701619.
[15] M. J. Mleczko, C. F. Zhang, H. R. Lee, H. H. Kuo, B. Magyari-Kope, R. G. Moore, et al., HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3 (8), (2017), 1700481. doi:10.1126/sciadv.1700481.
[16] S. Mangelsen, P. G. Naumov, O. I. Barkalov, S. A. Medvedev, W. Schnelle, M. Bobnar, et al., Large non saturating magneto resistance and pressure induced phase transition in the layered semimetal HfTe2. Phys. Rev. B 96 (20), (2017), 205148. doi:10.1103/physrevb.96.205148.
[17] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, et al., Electronics based on two-dimensional materials. Nat. Nanotechnol. 9 (10), (2014), 768–779. doi:10.1038/nnano.2014.207.
[18] X. R. Nie, B. Q. Sun, H. Zhu, M. Zhang, D. H. Zhao, L. Chen, et al., Impact of metal contacts on the performance of multilayer HfS2 field-effect transistors. ACS Appl. Mater. Interfaces. 9 (32), (2017), 26996–27003. doi:10.1021/acsami.7b06160.
[19] L. Yin, K. Xu, Y. Wen, Z. Wang, Y. Huang, F. Wang, et al., Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett. 109 (21), (2016), 213105. doi:10.1063/1.4968808.
[20] N. Wu, X. Zhao, X. Ma, Q. Xin, X. Liu, T. Wang, et al., Strain effect on the electronic properties of 1T-HfS2 monolayer. Phys. E Low-dimens. Syst. Nanostruct. 93, (2017), 1–5. doi:10.1016/j.physe.2017.05.008.
[21] Q. Zhao, Y. Guo, K. Si, Z. Ren, J. Bai, and X. Xu, Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidi (B) 254 (9), (2017), 1700033, doi:10.1002/pssb.201700033.
[22] Y. Nakata, K. Sugawara, A. Chainani, K. Yamauchi, K. Nakayama, S. Souma, et al., Dimensionality reduction and band quantization induced by potassium intercalation in 1T−HfTe2. Phys. Rev. Mater. 3 (7), (2019), 071001. doi:10.1103/physrevmaterials.3.071001.
[23] P. Yan, G. y. Gao, G. q. Ding, and D. Qin, Bilayer MSe2 (M _ Zr, Hf) as promising two-dimensional thermoelectric materials: a first-principles study. RSC Adv. 9 (22), (2019), 12394–12403. doi:10.1039/c9ra00586b.
[24] P. Hohenberg, and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (3B), (1964), B864–B871, DOI: 10.1103/physrev.136.b864.
[25] J. P. Perdew, and Y. Wang, Erratum: accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 98 (7), (2018), 079904, DOI: 10.1103/physrevb.98.079904.
[26] M. Ernzerhof, and G. E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys. 110 (11), (1999), 5029–5036, DOI: 10.1063/1.478401.
[27] T. Niazkar, G. Shams, Z. soltani, Electronic, Optical, and Thermoelectric Properties of BaFe2-xZnxAs2(x=0,1,2)orthorhombic Polymorphs: DFT Study, Journal of Optoelectronical Nanostructures, 6(3), (2021), pp. 93-116. doi: 10.30495/jopn.2021.28945.1237.
[28] M. R. Dehghan, S. ahmadi, Adsorption Behaviour of CO Molecule on Mg16M—O2 Nanostructures (M=Be, Mg, and Ca): A DFT Study, Journal of Optoelectronical Nanostructures, 6(1), (2021), pp. 1-20. doi: 10.30495/jopn.2021.4538.
[29] M. Askaripour Lahiji, A. Abdolahzadeh Ziabari, Ab–initio study of the electronic and optical traits of Na0.5Bi0.5TiO3 nanostructured thin film, Journal of Optoelectronical Nanostructures, 4(3), (2019), pp. 47-58, https://dorl.net/dor/20.1001.1.24237361.2019.4.3.4.6.
[30] D. R Hartree, The wave mechanics of an atom with a non-coulomb central field, Proc. Camb. Phil. Soc 24, (1928) 89-110, doi:10.1017/S0305004100011919.
[31] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, (1964), B 864-B 871, doi:10.1103/PhysRev.136.B864.
[32] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, (1965), A1133-A1138, doi: 10.1103/PhysRev.140.A1133.
[33] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, (1996), 3865-3868, doi: 10.1103/PhysRevLett.77.3865.
[34] TMD Huynh, DK Nguyen, TDH Nguyen, VK Dien, HD Pham, M-F Lin, Geometric and Electronic Properties of Monolayer HfX2 (X _ S, Se, or Te): A First-Principles Calculation. Front. Mater. 7:569756, (2021), doi: 10.3389/fmats.2020.569756.
[35] S. Jamalzadeh Kheirabadi, F. Behzadi, M. Sanaee, The effect of edge passivation with different atoms on ZrSe2 nanoribbons. Sensors and Actuators A: Physical, Volume 317, (2021), 112471, ISSN 0924-4247, https://doi.org/10.1016/j.sna.2020.112471.
[36] S. Jamalzadeh Kheirabadi, R. Ghayour, M. Sanaee, Negative differential resistance effect in different structures of armchair graphene nanoribbon, Diamond and Related Materials, Volume 108, (2020), 107970, ISSN 0925-9635, https://doi.org/10.1016/j.diamond.2020.107970.