Subject Areas : Journal of Optoelectronical Nanostructures
Neda Hasanzadeh Bishegahi 1 , Abdollah Eskandarian 2 , Abbas Ghadimi 3 , Ali Esmaeeli 4
1 - Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
2 - Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
3 - Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
4 - Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
Keywords:
Abstract :
[1] Rabbi MF, Popp J, Máté D, Kovács S. Energy Security and Energy Transition to Achieve Carbon Neutrality. Energies. 15(21) (2022,Oct) 1-18. Available:https://www.mdpi.com/1996-1073/15/21/8126
[2] Kharchich FZ, Khamlichi A. Optimizing efficiency of InGaP/GaAs dual-junction solar cells with double tunnel junction and bottom back surface field layers. Optik. 272(1) (2023,Feb) 170196. Available:https://www.sciencedirect.com/science/article/abs/pii/S0030402622014541
[3] Zhang S, Sun J. Design and optimization of ARC solar cell with intrinsic layer and p–n junction in bottom cell under AM1. 5G standard spectrum. Emergent Materials. 6(1) (2023,Jan) 159-166. Available:https://link.springer.com/article/10.1007/s42247-023-00457-4
[4] Arijit.B. R, Mandla.M, Roshika.K: Performance enhancement Of GaAs and InP Based Multi-Junction Silicon Solar Cells using thickness and doping profile optimization, in Chennai, India. IEEE, (2023) 19-21. Available:https://ieeexplore.ieee.org/abstract/document/10134102
[5] Goetzberger A, Luther J, Willeke G. Solar cells: past, present, future. Solar energy materials and solar cells.74(1) (2002,Oct) 1-11. Available:https://www.sciencedirect.com/science/article/abs/pii/S0927024802000429
[6] Bakour A, Saadoune A, Bouchama I, Dhiabi F, Boudour S, Saeed MA. Effect and optimization of ZnO layer on the performance of GaInP/GaAs tandem solar cell. Micro and Nanostructures.168(1) (2022, Aug) 207294. Available:https://www.sciencedirect.com/science/article/abs/pii/S2773012322001078
[7] Peng YS, Yao MH, Liu ZM, Tu JL, Cao QJ, Gong SF, Hu YT, Zhou SL. Numerical investigation on performance of ultra-thin GaAs solar cells enabled with frontal surface pyramid array. Journal of Physics D: Applied Physics. 24(55) (2022, Mar) 245105. Available:https://iopscience.iop.org/article/10.1088/1361-6463/ac5da3/meta
[8] Luque A, Hegedus S, editors. Handbook of photovoltaic science and engineering. John Wiley & Sons. (2011, Mar). Available:https://kashanu.ac.ir/Files/Content/Handbook.pdf
[9] Hutchby JA, Markunas RJ, Bedair SM. Material aspects of the fabrication of multijunction solar cells. Photovoltaics.543(9) (1985, May) 40-61. Available:https://www.spiedigitallibrary.org/conference-proceedings-of-spie/0543/0000/Material-Aspects-Of-The-Fabrication-Of-Multijunction-Solar-Cells/10.1117/12.948195.short?SSO=1
[10] De Vos A. Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics D: Applied Physics.13(5) (1980, May) 839. Available:https://iopscience.iop.org/article/10.1088/0022-3727/13/5/018/meta
[11] Lueck MR, Andre CL, Pitera AJ, Lee ML, Fitzgerald EA, Ringel SA. Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage. IEEE Electron Device Letters.27(3) (2006, Feb) 142-144. Available:https://ieeexplore.ieee.org/abstract/document/1599460/
[12] Leem JW, Lee YT, Yu JS. Optimum design of InGaP/GaAs dual-junction solar cells with different tunnel diodes. Optical and quantum electronics. 41(8) (2009,Jun) 605-12. Available:https://link.springer.com/article/10.1007/s11082-010-9367-1
[13] Singh KJ, Sarkar SK. Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers. Optical and Quantum Electronics.43(1) (2012, Feb) 1-21. Available:https://link.springer.com/article/10.1007/s11082-011-9499-y
[14] Nayak PP, Dutta JP, Mishra GP. Efficient InGaP/GaAs DJ solar cell with double back surface field layer. Engineering Science and Technology, an International Journal.18(3) (2015, Sep) 325-35. Available:https://www.sciencedirect.com/science/article/pii/S2215098615000245
[15] Dutta JP, Nayak PP, Mishra GP. Design and evaluation of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized double top BSF layer. Optik.127(8) (2016, Apr) 4156-61. Available:https://www.sciencedirect.com/science/article/pii/S0030402616000905
[16] Arzbin H, Ghadimi A. Efficiency improvement of ARC less InGaP/GaAs DJ solar cell with InGaP tunnel junction and optimized two BSF layer in top and bottom cells. Optik. 148(1) (2017, Nov) 358-67. Available:https://www.sciencedirect.com/science/article/pii/S0030402617310744
[17] Abbasian S, Sabbaghi-Nadooshan R. Design and evaluation of ARC less InGaP/AlGaInP DJ solar cell. Optik.136(1) (2017,May) 487-96. Available:https://www.sciencedirect.com/science/article/pii/S0030402617302279
[18] Arzbin HR, Ghadimi A. Improving the performance of a multi-junction solar cell by optimizing BSF, base and emitter layers. Materials Science and Engineering: B. 243(1) (2019, Apr) 108-14. Available:https://www.sciencedirect.com/science/article/pii/S092151071930087X
[19] Bagheri S, Talebzadeh R, Sardari B, Mehdizadeh F. Design and simulation of a high efficiency InGaP/GaAs multi junction solar cell with AlGaAs tunnel junction. Optik.199(1) (2019, Dec) 163315. Available:https://www.sciencedirect.com/science/article/pii/S0030402619312136
[20] Chee KW, Hu Y. Design and optimization of ARC less InGaP/GaAs single-/multi-junction solar cells with tunnel junction and back surface field layers. Superlattices and Microstructures. 119(1) (2018, Jul) 25-39. Available: https://www.sciencedirect.com/science/article/pii/S0749603617329087
[21] Sahoo GS, Nayak PP, Mishra GP. An ARC less InGaP/GaAs DJ solar cell with hetero tunnel junction. Superlattices and Microstructures. 95(1) (2016, Jul 115-27. Available:https://www.sciencedirect.com/science/article/pii/S0749603616301975
[22] Ali K, Khan SA, MatJafri MZ. TCAD design of silicon solar cells in comparison of antireflection coatings and back surface field. Optik. 127(19) (2016, Oct) 7492-7. Available:https://www.sciencedirect.com/science/article/pii/S0030402616304314
[23] Nayak PP, Dutta JP, Mishra GP. Performance Evaluation of InGaP/GaAs Solar Cell with Double Layer ARC. InIntelligent Computing, Communication and Devices. Springer . 308(1) (2015,Jun) 553-9. Available: https://link.springer.com/chapter/10.1007/978-81-322-2012-1_59
[24] Farhadi B, Naseri M. A novel efficient double junction InGaP/GaAs solar cell using a thin carbon nano tube layer. Optik.127(15) (2016, Aug) 6224-31.Available: https://www.sciencedirect.com/science/article/pii/S003040261630313
[25] Castaner L, Silvestre S. Modelling photovoltaic systems using PSpice. John Wiley and Sons: 2002, 21-174. Available:
https://www.sciencedirect.com/science/article/pii/S0030402616303138
[26] Routray SR, Sahoo GS, Mishra GP. Effect of intrinsic layer on the performance of InGaP/GaAs dual Junction solar cell. Michael Faraday IET International Summit, (2015,Sep). Available:https://digital-library.theiet.org/content/conferences/10.1049/cp.2015.1655
[27] Miles RW. Photovoltaic solar cells: Choice of materials and production methods. Vacuum. 80(10) (2006, Aug) 1090-7. Available:https://www.sciencedirect.com/science/article/pii/S0042207X06000182
[28] Zhao XF, Aierken A, Heini M, Tan M, Wu YY, Lu SL, Hao RT, Mo JH, Zhuang Y, Shen XB, Xu Y. Degradation characteristics of electron and proton irradiated InGaAsP/InGaAs dual junction solar cell. Solar Energy Materials and Solar Cells.206(1) (2020, Mar) 110339. Available:https://www.sciencedirect.com/science/article/abs/pii/S0927024819306658
[29] S. M. S. Hashemi Nassab, M. Imanieh, and A. Kamaly. The Effect of Doping and the Thickness of the Layers on CIGS Solar Cell Efficiency. Journal of Optoelectronical Nanostructures. 1(1) (2016) 9-24. Available:https://jopn.marvdasht.iau.ir/article_1812.html
[30] Y. Sefidgar, H. Rasooli Saghai, and H. Ghatei Khiabani Azar. Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP. Journal of Optoelectronical Nanostructures. 4(2) (2019) 83-102. Available: https://jopn.marvdasht.iau.ir/article_3480_0b715e5dbfb8c90033530e34eb33a84a.pdf
[31] M. Rajaee and S. Rabiee. Analysis and Implementation of a New Method to Increase the Efficiency of Photovoltaic Cells by Applying a Dual Axis Sun Tracking System and Fresnel Lens Array. Journal of Optoelectronical Nanostructures. 6(3) (2021) 59-80. Available: https://jopn.marvdasht.iau.ir/article_4981.html
[32] A. Keshavarz and Z. Abbasi. Spatial soliton pairs in an unbiased photovoltaic-photorefractive crystal circuit. Journal of Optoelectronical Nanostructures. 1(1) (2016) 81-90. Available: https://jopn.marvdasht.iau.ir/article_1817_ 1ee4531eafbf20226b5f4158a81b8220.pdf
[33] A. Mirkamali and K. Muminov. The effect of change the thickness on CdS/CdTe tandem multi-junction solar cells efficiency. Journal of Optoelectronical Nanostructures. 2(3) (2017) 13-24. Available: https://jopn.marvdasht.iau.ir/article_2428_71d76f5443f30e4893971a3af3662275.pdf
[34] SN Jafari, A Ghadimi, S Rouhi, Strained Carbon Nanotube(SCNT) thin layer effect on GaAs solar cells efficiency. Journal of Optoelectronical Nanostructures. 5(4) (2020) 87-110. Available: http://jopn.miau.ac.ir/article_4505_8947f89a5f380e375d5e6425249c10b5.pdf