Subject Areas :
Journal of Optoelectronical Nanostructures
Amin Sayyad Tondro
1
,
Mojtaba Sadeghi
2
,
Abbas Kamaly
3
,
Zahra Adelpour
4
,
Seyyed Ali Emamghorashi
5
1 - Department of Electrical Engineering, Fasa Branch, Islamic Azad University, Fasa, Iran
2 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
3 - Department of Electrical Engineering, Fasa Branch, Islamic Azad University, Fasa, Iran
4 - Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
5 - Department of Electrical Engineering, Fasa Branch, Islamic Azad University, Fasa, Iran
Received: 2022-12-28
Accepted : 2023-08-20
Published : 2023-11-01
Keywords:
References:
An, X. Hao, S. Li, X. Zhang. D-Shaped Photonic Crystal Fiber Refractive Index Sensor Based on Surface Plasmon Resonance. Appl. Opt. [Online]. 56 (24) (2017, Aug.) 6988-6922. Available: https://doi.org/10.1364/AO.56.006988
J. Wu, S. Li, X. Wang, M. Shi, X. Feng, Y. Liu. Ultrahigh Sensitivity Refractive Index Sensor of a D-Shaped PCF Based on Surface Plasmon Resonance. Appl. Opt. [Online]. 57(15) (2018, May). 4002-4007. Available: https://doi.org/10.1364/AO.57.004002
Salehnezhad, M. Soroosh, A. Farmani. Design and Numerical Simulation of a Sensetive Plasmonic-Based Nanosensor Utilizing MoS2 Monolayer and Graphene. DRM. [Online]. 131 (2023, Jan.) 109549. Available: https://doi.org/10.1016/j.diamond.2022.109594
R. J. Azizpour, M. Soroush, N. Dalvand, Y. S. Kavian. All-Optical Ultra-Fast Graphene-Photonic Crystal Switch. Crystals. [Online]. 9 (2019, Sep.) 461. Available: https://doi.org/10.3390/cryst9090461
Abbasi, M. Soroosh, E. Namjoo. Polarization-Insensitive Temperature Sensor Based on Liquid Filled Photonic Crystal Fiber. OPTIK. [Online]. 168 (2018, Sep.) 342-347. Available: https://doi.org/10.1016/j.ijleo.2018.04.116
Tian, P. Lu, L. Chen, C. Lv, D. Liu. All–solid D–shaped photonic fiber sensor based on surface plasmon resonance. Opt. Commun. [Online]. 285 (2012, March) 1550–1554. Available: https://www.sciencedirect.com/science/article/abs/pii/S0030401811013447
Ren, J. Yuan, K. Wang, B. Yan, X. Sang, C. Yu. Design of Photonic Crystal Fiber Refractive Index Sensor Based on Surface Plasmon Resonance Effect for the Dual-Wavebands Measurement. [Online]. Fiber. Integr. Opt. 40 (2020, Oct.) 263-275. Available: https://www.tandfonline.com/doi/full/10.1080/01468030.2020.1830204
Wu, S. Li, X. Wang, M. Shi, X. Feng, Y. Liu. Ultrahigh sensitivity refractive index sensor of a D–shaped PCF based on surface plasmon resonance. [Online]. Appl. Opt. 57 (2018, May) 4002–4007. Available: https://opg.optica.org/ao/abstract.cfm?uri=ao-57-15-4002
M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. Hsieh, E. Dulkeith, W. M. J. Green, Y. A. Vlasov. Engineering nonlinearities in nanoscale optical systems: Physics and applications in dispersion–engineered silicon nanophotonic wires. [Online]. Adv. Opt. Photonics, 1 (2009, Jan.) 162–235. Available: https://opg.optica.org/aop/fulltext.cfm?uri=aop-1-1-162&id=176228
N. Dash, R. Jha. On the performance of graphene–based D–shaped photonic crystal fiber biosensor using surface plasmon resonance. [Online]. Plasmonics, 10(5) (2015, Feb.) 1123–1131. Available: https://link.springer.com/article/10.1007/s11468-015-9912-7
Zhang, L. Xia, C. Zhou, X. Yu, H. Liu, D. Liu, Y. Zhang. Microstructured fiber based plasmonic index sensor with optimized accuracy and calibration relation in large dynamic range. [Online]. Opt. Commun. 284 (2011, Nov.) 4161–4166. Available: https://opg.optica.org/oe/fulltext.cfm?uri=oe-19-23-22863&id=224014
Wu, Y. Song, M. Sun, Q. Wang. Simulation of High-Performance Surface Plasmon Resonance
Sensor Based on D-Shaped Dual Channel Photonic Crystal
Fiber for Temperature Sensing. [Online]. Materials. 16 (2022, Dec.) 37. Available: https://doi.org/10.3390/ma16010037
Nivedha, P. R. Babu. K. Senthilnathan, D-Shaped Plasmonic Sensor Using a Molybdenum Disulfide Doped Photonic Crystal
Fiber. [Online]. IOP Conf. Ser. Mater. Sci. Eng. 263 (2017) 5203. Available: http://doi.org/10.1088/1757-899X/263/5/052031
Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao. Sensitivity-Enhanced Surface Plasmon Resonance Sensor Utilizing a Tungsten Disulfide (WS2) Nanosheets Overlayer. [Online]. Photon. Res. 6 (2018) 485–491. Available: https://opg.optica.org/prj/abstract.cfm?uri=prj-6-6-485
Momeni, M., Javadian Sarraf, M., Khatib, F. Design of high sensitivity and high FoM refractive index biosensor based on 2D-photonic crystal. Journal of Optoelectronical Nanostructures, 2021; 6(4): 33-58. doi: 30495/jopn.2022.27033.121720.1001.1.24237361.2021.6.4.3.1
Heidary Orojloo, M., Jabbari, M., Solookinejad, G., Sohrabi, F. Design and modeling of photonic crystal Absorber by using Gold and graphene films. Journal of Optoelectronical Nanostructures, 2022; 7(2): 1-10. doi: 30495/jopn.2022.28915.123520.1001.1.24237361.2022.7.2.1.2
Bazargani, M., Gharekhanlou, B., Banihashemin, M. Investigating the Design and Simulation of a Tunable Optical Filter Based on Photonic Crystal Using Selective Optofluidic Infiltration. Journal of Optoelectronical Nanostructures, 2022; 7(4): 66-79. doi: 10.30495/jopn.2022.29582.1248
Pathak, A.K., Singh, V.K.: SPR based optical fiber refractive index sensor using silver nanowire assisted CSMFC. IEEE Photonics Technol. Lett. 32(8), 465–468 (2020)
https://opg.optica.org/aop/fulltext.cfm?uri=aop-1-1-162&id=176228
Pathak AK, Viphavakit C, Rahman BM, Singh VK. A highly sensitive SPR refractive index sensor based on microfluidic channel assisted with graphene-Ag composite nanowire. IEEE Photonics Journal. 2021 Mar 29;13(2):1-8.
https://www.tandfonline.com/doi/full/10.1080/01468030.2020.1830204
Qiu, S., Chen, Y., Xu, F., Lu, Y.: Temperature sensor based on an isopropanol–sealed photonic crystal fiber in–line interferometer with enhanced refractive index sensitivity. Opt. Lett. 37, 863–865 (2012). https://doi.org/10.1016/j.ijleo.2018.04.116
Qiu SJ, Chen Y, Xu F, Lu YQ. Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer withenhanced refractive index sensitivity. Optics letters. 2012 Mar 1;37(5):863-5. doi: 10.30495/jopn.2022.29582.1248
Okuno, Y. Saito, S. Kawata, P. Verma. Tip-enhanced Raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube. Phys. Rev. Lett. 111, (2013) 216101. Available:10.1103/PhysRevLett.111.216101
Shahi, S. Flattening Few Mode Fiber Laser Source Based on PMF and Loop Mirror in a Ring Cavity Resonator. Journal of Optoelectronical Nanostructures, 2023; 8(1): 84-94. doi: 10.30495/jopn.2023.31308.1276
Rifat, A.A., Ahmed, R., Yetisen, A.K., Butt, H., Sabouri, A., Mahdiraji, G.A., Yun, S.H., Adikan, F.M.: Photonic crystal fiber based plasmonic sensors. Sens. Actuat B Chem. 243, 311–325 (2017) .https://opg.optica.org/aop/fulltext.cfm?uri=aop-1-1-162&id=176228
N. Lee, R. D. Hartschuh, D. Mehtani, A. Kisliuk, J. F. Maguire, M. Green, M. D. Foster, A. P. Sokolov, High contrast scanning nano-Raman spectroscopy of silicon. J. Raman Spectrosc. 38, (2007) 789–796. Available:10.1002/jrs.1698