Subject Areas : Journal of Optoelectronical Nanostructures
Forogh Pakrai 1 , Mohammad Soroosh 2 , jabbar ganji 3
1 - Department of Electrical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran.
2 - Department of Electrical Engineering, Shahid Chamran University of Ahvaz, Ahvaz,Iran.
3 - Department of Electrical Engineering, Mahshahr Branch, Islamic Azad University,Mahshahr, Iran.
Keywords:
Abstract :
[1] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58(23) (1987, June) 2486–2489. Available: https://doi.org/10.1103/PhysRevLett.58.2486
[2] E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett., 58(20) (1987, May) 2059–2062. Available: https://doi.org/10.1103/PhysRevLett.58.2059
[3] S. M. Mirjalili and S. Z. Mirjalili. Issues when designing hypoellipse photonic crystal waveguides. Infrared Phys. Technol., 69 (2015, Mar.) 62–67. Available: https://doi.org/10.1016/j.infrared.2015.01.003
[4] S M. Mirjalili and S. Z. Mirjalili. Asymmetric Oval-Shaped-Hole Photonic Crystal Waveguide Design by Artificial Intelligence Optimizers. IEEE J. Sel. Top. Quantum Electron., 22(2) (2016, Mar.) 258–264. Available: https://doi.org/10.1109/JSTQE.2015.2469760
[5] R. Massoudi, M. Najjar, F. Mehdizadeh, and V. Janyani. Investigation of resonant mode sensitivity in PhC based ring resonators. Opt. Quantum Electron., 51(3) (2019, March) 87. Available: https://doi.org/10.1007/s11082-019-1793-0
[6] H. Alipour-Banaei and F. Mehdizadeh. High sensitive photonic crystal ring resonator structure applicable for optical integrated circuits. Photonic Netw. Commun., 33(2) (2016, April) 152–158. Available: https://doi.org/10.1007/s11107-016-0625-4
[7] M. Youcef Mahmoud, G. Bassou, A. Taalbi, and Z. M. Chekroun. Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun., 285(3) (2012, Feb.) 368–372. Available: https://doi.org/10.1016/j.optcom.2011.09.068
[8] A. Taalbi, G. Bassou, and M. Youcef Mahmoud. New design of channel drop filters based on photonic crystal ring resonators. Opt. - Int. J. Light Electron Opt., 124(9) (2013, May) 824–827. Available: https://doi.org/10.1016/J.IJLEO.2012.01.045
[9] M. Youcef Mahmoud, G. Bassou, and A. Taalbi. A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt. - Int. J. Light Electron Opt., 124(17) (2013, Sep.) 2864–2867. Available: https://doi.org/10.1016/j.ijleo.2012.08.072
[10] V. Fallahi and M. Seifouri, Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices. J. Optoelectron. Nano Struc., 4(2) (2019) 53-68. Available: http://jopn.miau.ac.ir/article_3478.html
[11] V. Fallahi and M. Seifouri, Novel Four-Channel All Optical Demultiplexer Based on Square PhCRR for Using WDM Applications. J. Optoelectron. Nano Struc., 3(4) (2018) 59-70. Available: http://jopn.miau.ac.ir/article_3262.html
[12] Z. Zare, A. Gharaati, Investigation of thermal tunable nano metallic photonic crystal filter with mirror symmetry. J. Optoelectron. Nano Struc., 3 (3) (2018) 27-36. Available: jopn.miau.ac.ir/article_3043.html
[13] E. Rafiee and F. Emami, Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals. J. Optoelectron. Nano Struc., 1(2) (2016) 39-46. Available: http://jopn.miau.ac.ir/article_2047.html
[14] R. Talebzadeh, M. Soroosh, Y S. Kavian, and F. Mehdizadeh. All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photonic Netw. Commun., 34(2) (2017, Feb.) 248-57. Available: https://doi.org/10.1007/s11107-017-0688-x
[15] R. Talebzadeh, M. Soroosh, and F. Mehdizadeh. Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators. Opt. Appl., XLVI(4) (2016, Dec.) 553–564. Available: https://doi.org/10.5277/oa160404
[16] R. Talebzadeh, M. Soroosh, and T. Daghooghi. A 4-Channel Demultiplexer Based on 2D Photonic Crystal Using Line Defect Resonant Cavity. IETE J. Res., 62(6) (2016, Nov.) 866–872.
Available: https://doi.org/10.1080/03772063.2016.1217175
[17] R. Talebzadeh, M. Soroosh, Y S. Kavian, and F. Mehdizadeh. Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities. Opt. Int. J. Light Electron Opt., 140 (2017, July) 331–337. Available: https://doi.org/10.1016/j.ijleo.2017.04.075
[18] F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi. Design and simulation of all optical decoder based on nonlinear PhCRRs. Opt. - Int. J. Light Electron Opt., 156 (2018, Mar.) 701–706. Available: https://doi.org/10.1016/j.ijleo.2017.12.011
[19] S. Khosravi and M. Zavvari. Design and analysis of integrated all-optical 2 × 4 decoder based on 2D photonic crystals. Photonic Netw. Commun., 35(1) (2017, July) 122–128.
Available: https://doi.org/10.1007/s11107-017-0724-x
[20] T. Daghooghi, M. Soroosh, and K. Ansari-Asl. Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators. Appl. Opt., 57(9) (2018, March) 2250–2257.
Available: https://doi.org/10.1364/AO.57.002250
[21] S. Salimzadeh and H. Alipour-Banaei. A novel proposal for all optical 3 to 8 decoder based on nonlinear ring resonators. J. Mod. Opt. [Online]. 65(17) (2018, June) 2017–2024.
Available: https://doi.org/10.1080/09500340.2018.1489077
[22] A. Salimzadeh and H. Alipour-Banaei. An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators. Opt. Commun., 410 (2018, March) 793–798.
Available: https://doi.org/10.1016/j.optcom.2017.11.036
[23] S. Gholamnejad and M. Zavvari. Design and analysis of all-optical 4--2 binary encoder based on photonic crystal. Opt. Quantum Electron., 49(9) (2017, Aug.) 302.
Available: https://doi.org/10.1007/s11082-017-1144-y
[24] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh. Proposal for realizing an all-optical half adder based on photonic crystals. Appl. Opt., 57(7) (2018) 1617-1621.
Available: https://doi.org/10.1364/AO.57.001617
[25] A. Rahmani and F. Mehdizadeh. Application of nonlinear PhCRRs in realizing all optical half-adder. Opt. Quantum Electron. [Online]. 50(1) (2017, Dec.) 30. Available https://doi.org/10.1007/s11082-017-1301-3
[26] M. Neisy, M. Soroosh, and K. Ansari-Asl. All optical half adder based on photonic crystal resonant cavities. Photonic Netw. Commun., 35(2) (2018. April) 245–250.
Available: https://doi.org/10.1007/s11107-017-0736-6
[27] M. M. Karkhanehchi, F. Parandin, and A. Zahedi. Design of an all optical half-adder based on 2D photonic crystals. Photonic Netw. Commun., 33(2) (2017, april) 159–165.
Available https://doi.org/10.1007/s11107-016-0629-0
[28] A. Andalib. A novel proposal for all-optical Galois field adder based on photonic crystals. Photonic Netw. Commun., 35(3) (2018, Jan.) 392–396. Available: https://doi.org/10.1007/s11107-017-0756-2
[29] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh. A novel proposal for all optical 1-bit comparator using nonlinear PhCRRs. Photonics Nanostructures - Fundam. Appl. 34. (2019, May) 19–23. Available: https://doi.org/10.1016/j.photonics.2019.01.002
[30] A. Surendar, M. Asghari, and F. Mehdizadeh. A novel proposal for all-optical 1-bit comparator using nonlinear PhCRRs. Photonic Netw. Commun., 38(2) (2019, Oct.) 244-249.
Available: https://doi.org/10.1007/s11107-019-00853-z
[31] L. Zhu, F. Mehdizadeh, and R. Talebzadeh. Application of photonic-crystal-based nonlinear ring resonators for realizing an all-optical comparator. Appl. Opt., 58(30) (2019, Oct.) 8316–8321.
Available: https://doi.org/10.1364/AO.58.008316
[32] SMH. Jalali, M. Soroosh and G. Akbarizadeh . Ultra-fast 1-bit comparator using nonlinear photoniccrystal based ring resonators, J. Optoelectron. Nano Struc., 4(3) (2019) 59-72. Available: http://jopn.miau.ac.ir/article_3620.html
[33] S. S. Zamanian-Dehkordi, M. Soroosh, and G. Akbarizadeh. An ultra-fast all-optical RS flip-flop based on nonlinear photonic crystal structures. Opt. Rev., 25(4) (2018.Aug.) 523-531.
Available: https://doi.org/10.1007/s10043-018-0443-2
[34] A. Abbasi, M. Noshad, R. Ranjbar, and R. Kheradmand. Ultra compact and fast All Optical Flip Flop design in photonic crystal platform. Opt. Commun., 285(24) (2012, Aug.) 5073–5078.
Available: https://doi.org/10.1016/j.optcom.2012.06.095
[35] T. Zhao, M. Asghari, and F. Mehdizadeh. An All-Optical Digital 2-to-1 Multiplexer Using Photonic Crystal-Based Nonlinear Ring Resonators. J. Electron. Mater., 48(4) (2019, Jan.) 2482-2486. Available: https://doi.org/10.1007/s11664-019-06947-8
[36] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi. A Novel Proposal for All Optical Analog-to-Digital Converter Based on Photonic Crystal Structures. IEEE Photonics J., 9(2) (2017, april) 1–11. Available: https://doi.org/10.1109/JPHOT.2017.2690362
[37] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi. All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quantum Electron., 49(1) (2017, Jan.) 38.
Available: https://doi: 10.1007/s11082-016-0880-8
[38] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei H, and E. Farshidi. Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt., 56(7) (2017, Feb.) 1799–1806. Available: https://doi.org/10.1364/AO.56.001799
[39] S. Indira Gandhi and T. Sridarshini. Design of photonic crystal based optical digital to analog converters. Laser Phys., 29(4) (2019, March) 046206. Available: https://doi.org/10.1088/1555-6611/ab05d1
[40] D. Jafari, T. Nurmohammadi, M. J. Asadi, and K. Abbasian. All-optical analog-to-digital converter based on Kerr effect in photonic crystal. Opt. Laser Technol., 101 (2018, May) 138–143.
Available: https://doi.org/10.1016/j.optlastec.2017.11.007
[41] A. Tavousi, M. A. Mansouri-Birjandi, and M. Saffari. Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low- dimens. Syst. Nanostruct83 (2016, Sep.) 101-106.
Available: https://doi.org/10.1016/j.physe.2016.04.007
[42] F. Parandin, M R. Malmir, and M. Naseri. All-optical half-subtractor with low-time delay based on two-dimensional photonic crystals. Superlattices Microstruct., 109 (2017, Sep.) 437–441.
Available: https://doi.org/10.1016/j.spmi.2017.05.030
[43] R. Moradi. All optical half subtractor using photonic crystal based nonlinear ring resonators. Opt. Quantum Electron., 51(4) (2019,April) 119. Available: https://doi.org/10.1007/s11082-019-1831-y
[44] A. Askarian, G. Akbarizadeh, and M. Fartash. A novel proposal for all optical half-subtractor based on photonic crystals. Opt. Quantum Electron., 51(8) (2019, July) 264. Available: https://doi.org/10.1007/s11082-019-1978-6
[45] A. Askarian, G. Akbarizadeh, and M. Fartash. All-optical half-subtractor based on photonic crystals. Appl. Opt., 58(22) (2019, Aug.) 5931-5935. Available: https://doi.org/10.1364/AO.58.005931
[46] N. Namdari and R. Talebzadeh. Simple and compact optical half subtractor based on photonic crystal resonant cavities in silicon rods. Applied Optics., 59(1) (2020, Jan.) 165-170.
Available: https://doi.org/10.1364/AO.59.000165.
[47] J. P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. phys. [Online]. 114(2) (1994, Oct.) 185-200. Available: https://doi.org/10.1006/jcph.1994.1159
[48] A. C. Cangellaris. Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides. IEEE Microw. Guided Wave Lett. [Online]. 3(1) (1993, Jan.) 3-5. Available: https://doi.org/10.1109/75.180672
[49] D. Lowell, S. Hassan, O. Sale, M. Adewole, N. Hurley, U. Philipose, B. Chen, and Y. Lin. Holographic fabrication of graded photonic super-quasi-crystals with multiple-level gradients. Applied Optics. [Online]. 57(22) (2018, Aug.) 6598-6604. Available: https://doi.org/10.1364/AO.57.006598
[50] L. Pang, W. Nakagawa, and Y. Fainman. Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write. Applied Optics. [Online]. 42(27) (2003, Sep.) 5450-5456. Available: https://doi.org/10.1364/ao.42.005450
[51] M. Campbell, D. N. Sharp,M. T. Harrison, R. G. Denning, and A. J. Turberfield. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature. [Online]. 404(6773) (2000, Mar.) 53-56. Available: https://doi.org/10.1038/35003523
[52] D. Lowell, S. Hassan, M. Adewole, U. Philipose, B. Chen, and Y. Lin. Holographic fabrication of graded photonic super-crystals using an integrated spatial light modulator and reflective optical element laser projection system. Applied Optics. [Online]. 56(36) (2017, Dec.) 9888-9891. Available https://doi.org/10.1364/AO.56.009888
[53] Y. Liu, S. Liu, and X. Zhang. Fabrication of three-dimensional photonic crystals with two-beam holographic lithography. Applied Optics. [Online]. 45(3) (2006, Jan.) 480-483. Available: https://doi.org/10.1364/AO.45.000480
[54] H. M. Ku, C. Y. Huang, and S. Chao. Fabrication of three-dimensional autocloned photonic crystal on sapphire substrate. Applied Optics., 50(9) (2011, Mar.) C1-C4.
Available: https://doi.org/10.1364/AO.50.0000C1
[55] O. J. A. Schueller, G. M. Whitesides, J. A. Rogers, M. Meier, and A. Dodabalapur. Fabrication of photonic crystal lasers by nanomolding of solgel glasses. Applied Optics., 38(27) (1999, Sep.) 5799-5802. Available: https://doi.org/10.1364/AO.38.005799
[56] J. H. Chen, Y. T. Huang, Y. L. Yang, M. FLu, and J. M. Shieh. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters. Applied Optics., 51(24) (2012, Aug.) 5876-5884. Available: https://doi.org/10.1364/AO.51.005876
[57] L. Cui, Y. Zhang, J. Wang, Y. Ren, Y. Song, and L. Jiang. Ultra Fast Fabrication of Colloidal Photonic Crystals by Spray Coating. Macromolecular Rapid Communications., 30(8) (2009, April) 598-603. Available: https://doi.org/10.1002/marc.200800694
[58] G. V. Freymann, V. Kitaev, B. V. Lotschz, and G. A. Ozin. Bottom-up assembly of photonic crystals. Chem Soc Rev., 42(7) (2013, Mar.) 2528-2554. Available: https://doi.org/10.1039/c2cs35309a