Subject Areas : Journal of Optoelectronical Nanostructures
Hossein Afkhami 1 , Faridoon Shabani Nia 2 , Jamshid Aghaei 3
1 - Department of Mechanical, Electrical and Computer Engineering, Science and
Research Branch, Islamic Azad University, Tehran, Iran.
2 - Department of Power and Control Engineering, Shiraz University, Shiraz, Iran
3 - Department of Electrical and Electronics Engineering, Shiraz University of
Technology, Shiraz, Iran
Keywords:
Abstract :
[1] H. hashemi madani. M. R. Shayesteh. and M. R. Moslemi. A Carbon Nanotube (CNT)-based SiGe Thin Film Solar Cell Structure. Journal of Optoelectronical Nanostructures. 6( 1) (2021) 71-86.
Available: https://dx.doi.org/10.30495/jopn.2021.4541
[2] O. Talati Khoei and R. Hosseini. Device and Circuit Performance Simulation of a New Nano-Scaled Side Contacted Field Effect Diode Structure. Journal of Optoelectronical Nanostructures. 4( 3) (2019) 17-32.
Available: https://dorl.net/dor/20.1001.1.24237361.2019.4.3.2.4
[3] H. Faezinia and M. zavvari. Quantum modeling of light absorption in graphene based photo-transistors. Journal of Optoelectronical Nanostructures. 2(1) (2017) 9-20.
Available: https://dorl.net/dor/20.1001.1.24237361.2017.2.1.2.6
[4] A. rezaei. B. Azizollah-Ganji. and M. Gholipour. Effects of the Channel Length on the Nanoscale Field Effect Diode Performance. Journal of Optoelectronical Nanostructures. 3( 2) (2018) 29-40.
Available: https://dorl.net/dor/20.1001.1.24237361.2018.3.2.3.6
[5] A. Raychowdhury. A. Keshavarzi. J. Kurtin. V. De. and K. Roy. Carbon Nanotube Field-Effect Transistors for High-Performance Digital Circuits. IEEE Transactions on Electron Devices. 53(11) (2006) 2711-2717.
Available: https://doi.org/10.1109/TED.2006.883816
[6] S. Jogad. H. I. Alkhammash. N. Afzal. and S. A. Loan. CNTFET-based active grounded inductor using positive and negative current conveyors and applications. International Journal of Numerical Modelling. 34(5) (2021) 2895.
available: https://doi.org/10.1002/jnm.2895
[7] S. O. Koswatta. D. E. Nikonov. and M. S. Lundstrom. Computational study of carbon nanotube p-i-n tunnel FETs. Presented at IEEE International Electron Devices Meeting. (2005).
Available:https://doi.org/10.1109/IEDM.2005.1609396
[8] M. Diez-Garcia. A. Vincent. N. Izard. and D. Querlioz. Monte Carlo simulations of carbon nanotube networks for optoelectronic applications. Presented at IEEE International Electron Devices Meeting. (2014).
Available:https://doi.org/10.1109/IEDM.2005.1609396
[9] J. Guo. S. O. Koswatta. N. Neophytou. and M. Lundstrom. Carbon Nanotube Field-Effect Transistors. International Journal of High Speed Electronics and Systems. 16(04) (2006) 897-912. Available: https://doi.org/10.1142/S0129156406004077
[10] S. Dehghani. Numerical Study of Long Channel Carbon Nanotube Based Transistors by Considering Variation in CNT Diameter. Journal of Nano Research. 61 (2020) 78-87.
Available:https://doi.org/10.4028/www.scientific.net/JNanoR.61.78
[11] K. Bikshalu. V. S. K. Reddy. P. C. S. Reddy. and K. V. Rao. High-performance Carbon Nanotube Field Effect Transistors with High k Dielectric Gate Material. Proceedings. 2(9) (2015) 4457-4462.
Available:https://doi.org/10.1016/j.matpr.2015.10.048
[12] R. Martel. T. Schmidt. H. R. Shea. T. Hertel. and P. Avouris. Single- and Multi-Wall Carbon Nanotube Field-Effect Transistors. Applied Physics Letters. 73 (1998) 10-26.
Available:https://doi.org/10.1063/1.122477
[13] S. Datta. Nanoscale device modeling: the Green’s function method. Superlattices and Microstructures. 28( 4) (2000) 253-278.
Available:https://doi.org/10.1006/spmi.2000.0920
[14] M. Akbari Eshkalak and R. Faez. A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor. Journal of Optoelectronical Nanostructures. 2(3) (2017) 1-12.
Available:https://doi.org/10.1109/DRC.2010.5551931
[15] M. Jafari. Electronic Transmission Wave Function of Disordered Graphene by Direct Method and Green's Function Method. Journal of Optoelectronical Nanostructures. 1(2) (2016) 57-68.
Available:https://dorl.net/dor/20.1001.1.24237361.2016.1.2.6.5
[16] D. L. John. Simulation studies of carbon nanotube field-effect transistors. Text, 2006. Available:http://hdl.handle.net/2429/18554
[17] J. Guo. S. Datta. M. s. Lundstrom. and M. Anantram. Toward Multiscale Modeling of Carbon Nanotube Transistors. International Journal for Multiscale Computational Engineering 2 (2004) 257-276.
Available:http://dx.doi.org/10.1615/IntJMultCompEng.v2.i2.60
[18] J. Appenzeller. L. Yu-Ming. J. Knoch. C. Zhihong. and P. Avouris. Comparing carbon nanotube transistors - the ideal choice: a novel tunneling device design. IEEE Transactions on Electron Devices. 52(12) (2005) 2568-2576.
Available:https://doi.org/10.1109/TED.2005.859654
[19] Z. Ahangari. Switching Performance of Nanotube Core-Shell Heterojunction Electrically Doped Junctionless Tunnel Field Effect Transistor. Journal of Optoelectronical Nanostructures. 5( 2) (2020) 1-12.
Available:https://dorl.net/dor/20.1001.1.24237361.2020.5.2.1.8
[20] J. Deng and H. P. Wong. A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part I: Model of the Intrinsic Channel Region. IEEE Transactions on Electron Devices. 54 (12) (2007) 3186-3194.
Available:https://doi.org/10.1109/TED.2007.909043
[21] K. Pourchitsaz and M. R. Shayesteh. Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET). Journal of Optoelectronical Nanostructures. 4(1) (2019) 51-66.
Available:https://dorl.net/dor/20.1001.1.24237361.2019.4.1.4.2
[22] I. Hassaninia. M. H. Sheikhi. and Z. Kordrostami. Simulation of carbon nanotube FETs with linear doping profile near the source and drain contacts. Solid-State Electronics. 52(6) (2008) 980-985.
Available:https://doi.org/10.1016/j.sse.2008.01.021
[23] M. Hayati. A. Rezaei. and M. Seifi. CNT-MOSFET modeling based on artificial neural network: Application to simulation of nanoscale circuits. Solid-State Electronics. 54 (2010) 52-57.
Available:https://doi.org/10.1016/j.sse.2009.09.027
[24] R. Abdollahzadeh Badelbo. F. Farokhi. and A. Kashaniniya. Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks. International Journal of Smart Electrical Engineering. 2(4). (2013) 217-222.
Available:https://dorl.net/dor/20.1001.1.22519246.2013.02.4.5.4
[25] C. Maneux et al.. Multiscale simulation of carbon nanotube transistors. Solid-State Electronics. 89 (2013) 26-67.
Available:https://doi.org/10.1016/j.sse.2013.06.013
[26] T. Chu. N. Thuy. T. Tran. T. Huyen. and A. T. Mai. Carbon Nanotube Field-Effect Transistor for DNA Sensing. Journal of Electronic Materials. 46 (2017) 01-05.
Available:https://link.springer.com/article/10.1007/s11664-016-5238-2
[27] S. Koswatta. M. s. Lundstrom. M. Anantram. and D. Nikonov. Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Applied Physics Letters. 87 (2005) 253107-253107.
Available:http://dx.doi.org/10.1063/1.2146065
[28] S. Datta, Atom to Transistor, in Quantum Transport. Cambridge: Cambridge University Press, 2005.
Available:https://doi.org/10.1017/CBO9781139164313
[29] J. Guo and M.s. Lundstrom, Device Simulation of SWNT-FETs. 2009, 107-131.
Available:https://link.springer.com/chapter/10.1007/978-0-387-69285-2_5
[30] Y. Sun et al.. Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization. Biosensors and Bioelectronics. 137 (2019) 255-262.
Available:https://doi.org/10.1016/j.bios.2019.04.054
[31] P. Reiner and B. M. Wilamowski. Efficient incremental construction of RBF networks using quasi-gradient method. Neurocomputing. 150 (2015) 349-356.
Available:https://doi.org/10.1016/j.neucom.2014.05.082
[32] G.-B. Huang. L. Chen. and C.-K. Siew. Universal approximation using incremental constructive feedforward networks with random hidden nodes. Trans. Neur. Netw.. 17( 4) (2006) 879-892.
Available:http://dx.doi.org/10.1109/TNN.2006.875977
[33] Y. Weng. R. Negi. and M. D. Ilić. A search method for obtaining initial guesses for smart grid state estimation. Presented at 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm). (2012).
Available:https://doi.org/10.1109/SmartGridComm.2012.6486051
[34] J. Lagarias. J. Reeds. M. Wright. and P. Wright. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization. 9(1) (1998) 112-147.
Available:http://dx.doi.org/10.1137/S1052623496303470
[35] N. D. Pham. Improved Nelder Mead’s Simplex Method and Applications. Doctor of Philosophy. Auburn 2012.
Available:http://hdl.handle.net/10415/2985