Subject Areas : Journal of Optoelectronical Nanostructures
S.N jafari 1 , Abbas Ghadimi 2 , s. rouhi 3
1 - Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran,
2 - Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
3 - Department of Mechanical Engineering, Langarud Branch, Islamic Azad University, Langarud, Iran,
Keywords:
Abstract :
[1] R. Bkakri, A. Sayari, E. Shalaan, S. Wageh, A. Al-Ghamdi, A. Bouazizi, Effects of the graphene doping level on the optical and electrical properties of ITO/P3HT: Graphene/Au organic solar cells, superlattices and microstructures, 76 (2014) 461-471.
[2] T. Mahmoudi, Y. Wang, Y.-B. Hahn, Graphene and its derivatives for solar cells application, Nano Energy, 47 (2018) 51-65.
[3] H. Liu, P. Liu, L.-a. Bian, C. Liu, Q. Zhou, Y. Chen, Electrically tunable terahertz metamaterials based on graphene stacks array, Superlattices and Microstructures, 112 (2017) 470-479.
[4] M.B. Rhouma, M. Oueslati, B. Guizal, Surface plasmons on a doped graphene sheet with periodically modulated conductivity, Superlattices and Microstructures, 96 (2016) 212-219.
[5] S. Gong, Z. Zhu, S. Meguid, Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes, Polymer, 56 (2015) 498-506.
[6] R. Kotsilkova, E. Ivanov, D. Bychanok, A. Paddubskaya, M. Demidenko, J. Macutkevic, S. Maksimenko, P. Kuzhir, Effects of sonochemical modification of carbon nanotubes on electrical and electromagnetic shielding properties of epoxy composites, Composites Science and Technology, 106 (2015) 85-92.
[7] C. Ma, H.-Y. Liu, X. Du, L. Mach, F. Xu, Y.-W. Mai, Fracture resistance, thermal and electrical properties of epoxy composites containing aligned carbon nanotubes by low magnetic field, Composites Science and Technology, 114 (2015) 126-135.
[8] J.R. Bautista-Quijano, P. Potschke, H. Brunig, G. Heinrich, Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning, Polymer, 82 (2016) 181-189.
[9] T.S. Williams, N.D. Orloff, J.S. Baker, S.G. Miller, B. Natarajan, J. Obrzut, L.S. McCorkle, M. Lebron-Colo.n, J. Gaier, M.A. Meador, Trade-off between the mechanical strength and microwave electrical properties of functionalized and irradiated carbon nanotube sheets, ACS applied materials & interfaces, 8 (2016) 9327-9334.
Strained Carbon Nanotube (SCNT) Thin Layer Effect on GaAs Solar Cells Efficiency * 105
[10] I. Burmistrov, N. Gorshkov, I. Ilinykh, D. Muratov, E. Kolesnikov, E. Yakovlev, I. Mazov, J.-P. Issi, D. Kuznetsov, Mechanical and electrical properties of ethylene-1-octene and polypropylene composites filled with carbon nanotubes, Composites Science and Technology, 147 (2017) 71-77.
[11] X. Zheng, Y. Huang, S. Zheng, Z. Liu, M. Yang, Improved dielectric properties of polymer-based composites with carboxylic functionalized multiwalled carbon nanotubes, Journal of Thermoplastic Composite Materials, 32 (2019) 473-486.
[12] Y.V. Shtogun, L.M. Woods, Electronic and magnetic properties of deformed and defective single wall carbon nanotubes, Carbon, 47 (2009) 3252-3262.
[13] C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A.C. Hinckley, I. Pochorovski, X. Yan, J.W.-F. To, J.Y. Oh, Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors, Nature Electronics, 1 (2018) 183.
[14] R. Kumar, S.B. Cronin, Optical properties of carbon nanotubes under axial strain, Journal of nanoscience and nanotechnology, 8 (2008) 122-130.
[15] L. Hu, W. Yuan, P. Brochu, G. Gruner, Q. Pei, Highly stretchable, conductive, and transparent nanotube thin films, Applied Physics Letters, 94 (2009) 161108.
[16] A. Darvishzadeh, N. Alharbi, A. Mosavi, N.E. Gorji, Modeling the strain impact on refractive index and optical transmission rate, Physica B: Condensed Matter, 543 (2018) 14-17.
[17] Y. Li, P.S. Owuor, Z. Dai, Q. Xu, R.V. Salvatierra, S. Kishore, R. Vajtai, J.M. Tour, J. Lou, C.S. Tiwary, Strain-controlled optical transmittance tuning of three-dimensional carbon nanotube architectures, Journal of Materials Chemistry C, 7 (2019) 1927-1933.
[18] Y. Chu, P. Gautreau, T. Ragab, C. Basaran, Strained phonon.phonon scattering in carbon nanotubes, Computational Materials Science, 112 (2016) 87-91.
[19] S. Fotoohi, S. Haji Nasiri, Vacancy Defects Induced Magnetism in Armchair Graphdiyne Nanoribbon, Journal of Optoelectronical Nanostructures, 4 (2019) 15-38.
106 * Journal of Optoelectronical Nanostructures Autumn 2020 / Vol. 5, No. 4
[20] H. Rahimi, Absorption Spectra of a Graphene Embedded One Dimensional Fibonacci Aperiodic Structure, Journal of Optoelectronical Nanostructures Autumn, 3 (2018).
[21] N. Karachi, M. Emadi, M. Servatkhah, Computational Investigation on Structural Properties of Carbon Nanotube Binding to Nucleotides According to the QM Methods, Journal of Optoelectronical Nanostructures, 4 (2019) 99-124.
[22] A. Bett, F. Dimroth, G. Stollwerck, O. Sulima, III-V compounds for solar cell applications, Applied Physics A, 69 (1999) 119-129.
[23] M. Bosi, C. Pelosi, The potential of IIIپ]V semiconductors as terrestrial photovoltaic devices, Progress in Photovoltaics: Research and Applications, 15 (2007) 51-68.
[24] F. Schwierz, J.J. Liou, RF transistors: Recent developments and roadmap toward terahertz applications, Solid-State Electronics, 51 (2007) 1079-1091.
[25] C. Chang, F. Kai, GaAs high-speed devices: physics, technology, and circuit applications, John Wiley & Sons1994.
[26] W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of pپ]n junction solar cells, Journal of applied physics, 32 (1961) 510-519.
[27] C. Algora, E. Ortiz, I. Rey-Stolle, V. Diaz, R. Pena, V.M. Andreev, V.P. Khvostikov, V.D. Rumyantsev, A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns, IEEE Transactions on Electron Devices, 48 (2001) 840-844.
[28] K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S.P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding, IEEE Journal of Photovoltaics, 3 (2013) 1423-1428.
[29] E.D. Kosten, J.H. Atwater, J. Parsons, A. Polman, H.A. Atwater, Highly efficient GaAs solar cells by limiting light emission angle, Light: Science & Applications, 2 (2013) e45.
[30] C.-W. Cheng, K.-T. Shiu, N. Li, S.-J. Han, L. Shi, D.K. Sadana, Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics, Nature communications, 4 (2013) 1577.
Strained Carbon Nanotube (SCNT) Thin Layer Effect on GaAs Solar Cells Efficiency * 107
[31] O.D. Miller, E. Yablonovitch, S.R. Kurtz, Strong internal and external luminescence as solar cells approach the Shockley.Queisser limit, IEEE Journal of Photovoltaics, 2 (2012) 303-311.
[32] X. Wang, M.R. Khan, J.L. Gray, M.A. Alam, M.S. Lundstrom, Design of GaAs solar cells operating close to the Shockley.Queisser limit, IEEE Journal of Photovoltaics, 3 (2013) 737-744.
[33] F. Dimroth, M. Grave, P. Beutel, U. Fiedeler, C. Karcher, T.N. Tibbits, E. Oliva, G. Siefer, M. Schachtner, A. Wekkeli, Wafer bonded fourپ]junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency, Progress in Photovoltaics: Research and Applications, 22 (2014) 277-282.
[34] M. Steiner, J. Geisz, I. Garcia, D. Friedman, A. Duda, S. Kurtz, Optical enhancement of the open-circuit voltage in high quality GaAs solar cells, Journal of Applied Physics, 113 (2013) 123109.
[35] Y. Sefidgar, H. Rasooli Saghai, H. Ghatei Khiabani Azar, Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP, Journal of Optoelectronical Nanostructures, 4 (2019) 83-102.
[36] S. Hubbard, C. Cress, C. Bailey, R. Raffaelle, S. Bailey, D. Wilt, Effect of strain compensation on quantum dot enhanced GaAs solar cells, Applied Physics Letters, 92 (2008) 123512.
[37] P. Krogstrup, H.I. Jorgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, A.F. i Morral, Single-nanowire solar cells beyond the Shockley.Queisser limit, Nature Photonics, 7 (2013) 306.
[38] L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, Y. Wang, Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells, Applied Physics Letters, 99 (2011) 143116.
[39] I. Aberg, G. Vescovi, D. Asoli, U. Naseem, J.P. Gilboy, C. Sundvall, A. Dahlgren, K.E. Svensson, N. Anttu, M.T. Bjork, A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun, IEEE Journal of photovoltaics, 6 (2015) 185-190.
[40] J. Grandidier, D.M. Callahan, J.N. Munday, H.A. Atwater, Gallium arsenide solar cell absorption enhancement using whispering gallery modes of dielectric nanospheres, IEEE Journal of Photovoltaics, 2 (2012) 123-128.
108 * Journal of Optoelectronical Nanostructures Autumn 2020 / Vol. 5, No. 4
[41] W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang, J. Li, Surface plasmon enhanced GaAs thin film solar cells, Solar Energy Materials and Solar Cells, 95 (2011) 693-698.
[42] K. Nakayama, K. Tanabe, H.A. Atwater, Plasmonic nanoparticle enhanced light absorption in GaAs solar cells, Applied Physics Letters, 93 (2008) 121904.
[43] D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, J.S. Harris, High-efficiency nanostructured window GaAs solar cells, Nano letters, 13 (2013) 4850-4856.
[44] W. Jie, F. Zheng, J. Hao, Graphene/gallium arsenide-based Schottky junction solar cells, Applied physics letters, 103 (2013) 233111.
[45] K.J. Singh, T.J. Singh, D. Chettri, S. kumar Sarkar, Heterogeneous carbon nano-tube window layer with higher sheet resistance improve the solar cell performance, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, pp. 012023.
[46] K.J. Singh, T.J. Singh, D. Chettri, S.K. Sarkar, A thin layer of Carbon Nano Tube (CNT) as semi-transparent charge collector that improve the performance of the GaAs Solar Cell, Optik, 135 (2017) 256-270.
[47] V. Fallahi, M. Seifouri, Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices, Journal of Optoelectronical Nanostructures, 4 (2019) 53-68.
[48] S.N. Jafari, A. Ghadimi, S. Rouhi, Improving the efficiency of GaAs solar cells using a double semi-transparent carbon nanotubes thin layer, The European Physical Journal Applied Physics, 88 (2019) 20401.
[49] M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohlپ]Ebinger, A.W. Hoپ]Baillie, Solar cell efficiency tables (version 52), Progress in Photovoltaics: Research and Applications, 26 (2018) 427-436.
[50] V. Souza, S. Husmann, E. Neiva, F. Lisboa, L. Lopes, R. Salvatierra, A. Zarbin, Flexible, transparent and thin films of carbon nanomaterials as electrodes for electrochemical applications, Electrochimica Acta, 197 (2016) 200-209.
Strained Carbon Nanotube (SCNT) Thin Layer Effect on GaAs Solar Cells Efficiency * 109
[51] D.Q. Zheng, Z. Zhao, R. Huang, J. Nie, L. Li, Y. Zhang, High-performance piezo-phototronic solar cell based on two-dimensional materials, Nano Energy, 32 (2017) 448-453.
[52] Y. Song, K. Choi, D.-H. Jun, J. Oh, Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers, Optics express, 25 (2017) 23862-23872.
[53] R. Tatavarti, G. Hillier, A. Dzankovic, G. Martin, F. Tuminello, R. Navaratnarajah, G. Du, D. Vu, N. Pan, Lightweight, low cost GaAs solar cells on 4 پچepitaxial liftoff (ELO) wafers, 2008 33rd IEEE Photovoltaic Specialists Conference, IEEE, 2008, pp. 1-4.
[54] F.-L. Wu, S.-L. Ou, R.-H. Horng, Y.-C. Kao, Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications, Solar Energy Materials and Solar Cells, 122 (2014) 233-240.
[55] K. Lee, J.D. Zimmerman, T.W. Hughes, S.R. Forrest, Nonپ]destructive wafer recycling for lowپ]cost thinپ]film flexible optoelectronics, Advanced Functional Materials, 24 (2014) 4284-4291.
[56] S. Moon, K. Kim, Y. Kim, J. Heo, J. Lee, Highly efficient single-junction GaAs thin-film solar cell on flexible substrate, Scientific reports, 6 (2016) 30107.